ellipse_approximation.cc 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455
  1. // Ceres Solver - A fast non-linear least squares minimizer
  2. // Copyright 2015 Google Inc. All rights reserved.
  3. // http://ceres-solver.org/
  4. //
  5. // Redistribution and use in source and binary forms, with or without
  6. // modification, are permitted provided that the following conditions are met:
  7. //
  8. // * Redistributions of source code must retain the above copyright notice,
  9. // this list of conditions and the following disclaimer.
  10. // * Redistributions in binary form must reproduce the above copyright notice,
  11. // this list of conditions and the following disclaimer in the documentation
  12. // and/or other materials provided with the distribution.
  13. // * Neither the name of Google Inc. nor the names of its contributors may be
  14. // used to endorse or promote products derived from this software without
  15. // specific prior written permission.
  16. //
  17. // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  18. // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  19. // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  20. // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
  21. // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  22. // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  23. // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  24. // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  25. // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  26. // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  27. // POSSIBILITY OF SUCH DAMAGE.
  28. //
  29. // Author: richie.stebbing@gmail.com (Richard Stebbing)
  30. //
  31. // This fits points randomly distributed on an ellipse with an approximate
  32. // line segment contour. This is done by jointly optimizing the control points
  33. // of the line segment contour along with the preimage positions for the data
  34. // points. The purpose of this example is to show an example use case for
  35. // dynamic_sparsity, and how it can benefit problems which are numerically
  36. // dense but dynamically sparse.
  37. #include <cmath>
  38. #include <utility>
  39. #include <vector>
  40. #include "ceres/ceres.h"
  41. #include "glog/logging.h"
  42. // Data generated with the following Python code.
  43. // import numpy as np
  44. // np.random.seed(1337)
  45. // t = np.linspace(0.0, 2.0 * np.pi, 212, endpoint=False)
  46. // t += 2.0 * np.pi * 0.01 * np.random.randn(t.size)
  47. // theta = np.deg2rad(15)
  48. // a, b = np.cos(theta), np.sin(theta)
  49. // R = np.array([[a, -b],
  50. // [b, a]])
  51. // Y = np.dot(np.c_[4.0 * np.cos(t), np.sin(t)], R.T)
  52. const int kYRows = 212;
  53. const int kYCols = 2;
  54. // clang-format off
  55. const double kYData[kYRows * kYCols] = {
  56. +3.871364e+00, +9.916027e-01,
  57. +3.864003e+00, +1.034148e+00,
  58. +3.850651e+00, +1.072202e+00,
  59. +3.868350e+00, +1.014408e+00,
  60. +3.796381e+00, +1.153021e+00,
  61. +3.857138e+00, +1.056102e+00,
  62. +3.787532e+00, +1.162215e+00,
  63. +3.704477e+00, +1.227272e+00,
  64. +3.564711e+00, +1.294959e+00,
  65. +3.754363e+00, +1.191948e+00,
  66. +3.482098e+00, +1.322725e+00,
  67. +3.602777e+00, +1.279658e+00,
  68. +3.585433e+00, +1.286858e+00,
  69. +3.347505e+00, +1.356415e+00,
  70. +3.220855e+00, +1.378914e+00,
  71. +3.558808e+00, +1.297174e+00,
  72. +3.403618e+00, +1.343809e+00,
  73. +3.179828e+00, +1.384721e+00,
  74. +3.054789e+00, +1.398759e+00,
  75. +3.294153e+00, +1.366808e+00,
  76. +3.247312e+00, +1.374813e+00,
  77. +2.988547e+00, +1.404247e+00,
  78. +3.114508e+00, +1.392698e+00,
  79. +2.899226e+00, +1.409802e+00,
  80. +2.533256e+00, +1.414778e+00,
  81. +2.654773e+00, +1.415909e+00,
  82. +2.565100e+00, +1.415313e+00,
  83. +2.976456e+00, +1.405118e+00,
  84. +2.484200e+00, +1.413640e+00,
  85. +2.324751e+00, +1.407476e+00,
  86. +1.930468e+00, +1.378221e+00,
  87. +2.329017e+00, +1.407688e+00,
  88. +1.760640e+00, +1.360319e+00,
  89. +2.147375e+00, +1.396603e+00,
  90. +1.741989e+00, +1.358178e+00,
  91. +1.743859e+00, +1.358394e+00,
  92. +1.557372e+00, +1.335208e+00,
  93. +1.280551e+00, +1.295087e+00,
  94. +1.429880e+00, +1.317546e+00,
  95. +1.213485e+00, +1.284400e+00,
  96. +9.168172e-01, +1.232870e+00,
  97. +1.311141e+00, +1.299839e+00,
  98. +1.231969e+00, +1.287382e+00,
  99. +7.453773e-01, +1.200049e+00,
  100. +6.151587e-01, +1.173683e+00,
  101. +5.935666e-01, +1.169193e+00,
  102. +2.538707e-01, +1.094227e+00,
  103. +6.806136e-01, +1.187089e+00,
  104. +2.805447e-01, +1.100405e+00,
  105. +6.184807e-01, +1.174371e+00,
  106. +1.170550e-01, +1.061762e+00,
  107. +2.890507e-01, +1.102365e+00,
  108. +3.834234e-01, +1.123772e+00,
  109. +3.980161e-04, +1.033061e+00,
  110. -3.651680e-01, +9.370367e-01,
  111. -8.386351e-01, +7.987201e-01,
  112. -8.105704e-01, +8.073702e-01,
  113. -8.735139e-01, +7.878886e-01,
  114. -9.913836e-01, +7.506100e-01,
  115. -8.784011e-01, +7.863636e-01,
  116. -1.181440e+00, +6.882566e-01,
  117. -1.229556e+00, +6.720191e-01,
  118. -1.035839e+00, +7.362765e-01,
  119. -8.031520e-01, +8.096470e-01,
  120. -1.539136e+00, +5.629549e-01,
  121. -1.755423e+00, +4.817306e-01,
  122. -1.337589e+00, +6.348763e-01,
  123. -1.836966e+00, +4.499485e-01,
  124. -1.913367e+00, +4.195617e-01,
  125. -2.126467e+00, +3.314900e-01,
  126. -1.927625e+00, +4.138238e-01,
  127. -2.339862e+00, +2.379074e-01,
  128. -1.881736e+00, +4.322152e-01,
  129. -2.116753e+00, +3.356163e-01,
  130. -2.255733e+00, +2.754930e-01,
  131. -2.555834e+00, +1.368473e-01,
  132. -2.770277e+00, +2.895711e-02,
  133. -2.563376e+00, +1.331890e-01,
  134. -2.826715e+00, -9.000818e-04,
  135. -2.978191e+00, -8.457804e-02,
  136. -3.115855e+00, -1.658786e-01,
  137. -2.982049e+00, -8.678322e-02,
  138. -3.307892e+00, -2.902083e-01,
  139. -3.038346e+00, -1.194222e-01,
  140. -3.190057e+00, -2.122060e-01,
  141. -3.279086e+00, -2.705777e-01,
  142. -3.322028e+00, -2.999889e-01,
  143. -3.122576e+00, -1.699965e-01,
  144. -3.551973e+00, -4.768674e-01,
  145. -3.581866e+00, -5.032175e-01,
  146. -3.497799e+00, -4.315203e-01,
  147. -3.565384e+00, -4.885602e-01,
  148. -3.699493e+00, -6.199815e-01,
  149. -3.585166e+00, -5.061925e-01,
  150. -3.758914e+00, -6.918275e-01,
  151. -3.741104e+00, -6.689131e-01,
  152. -3.688331e+00, -6.077239e-01,
  153. -3.810425e+00, -7.689015e-01,
  154. -3.791829e+00, -7.386911e-01,
  155. -3.789951e+00, -7.358189e-01,
  156. -3.823100e+00, -7.918398e-01,
  157. -3.857021e+00, -8.727074e-01,
  158. -3.858250e+00, -8.767645e-01,
  159. -3.872100e+00, -9.563174e-01,
  160. -3.864397e+00, -1.032630e+00,
  161. -3.846230e+00, -1.081669e+00,
  162. -3.834799e+00, -1.102536e+00,
  163. -3.866684e+00, -1.022901e+00,
  164. -3.808643e+00, -1.139084e+00,
  165. -3.868840e+00, -1.011569e+00,
  166. -3.791071e+00, -1.158615e+00,
  167. -3.797999e+00, -1.151267e+00,
  168. -3.696278e+00, -1.232314e+00,
  169. -3.779007e+00, -1.170504e+00,
  170. -3.622855e+00, -1.270793e+00,
  171. -3.647249e+00, -1.259166e+00,
  172. -3.655412e+00, -1.255042e+00,
  173. -3.573218e+00, -1.291696e+00,
  174. -3.638019e+00, -1.263684e+00,
  175. -3.498409e+00, -1.317750e+00,
  176. -3.304143e+00, -1.364970e+00,
  177. -3.183001e+00, -1.384295e+00,
  178. -3.202456e+00, -1.381599e+00,
  179. -3.244063e+00, -1.375332e+00,
  180. -3.233308e+00, -1.377019e+00,
  181. -3.060112e+00, -1.398264e+00,
  182. -3.078187e+00, -1.396517e+00,
  183. -2.689594e+00, -1.415761e+00,
  184. -2.947662e+00, -1.407039e+00,
  185. -2.854490e+00, -1.411860e+00,
  186. -2.660499e+00, -1.415900e+00,
  187. -2.875955e+00, -1.410930e+00,
  188. -2.675385e+00, -1.415848e+00,
  189. -2.813155e+00, -1.413363e+00,
  190. -2.417673e+00, -1.411512e+00,
  191. -2.725461e+00, -1.415373e+00,
  192. -2.148334e+00, -1.396672e+00,
  193. -2.108972e+00, -1.393738e+00,
  194. -2.029905e+00, -1.387302e+00,
  195. -2.046214e+00, -1.388687e+00,
  196. -2.057402e+00, -1.389621e+00,
  197. -1.650250e+00, -1.347160e+00,
  198. -1.806764e+00, -1.365469e+00,
  199. -1.206973e+00, -1.283343e+00,
  200. -8.029259e-01, -1.211308e+00,
  201. -1.229551e+00, -1.286993e+00,
  202. -1.101507e+00, -1.265754e+00,
  203. -9.110645e-01, -1.231804e+00,
  204. -1.110046e+00, -1.267211e+00,
  205. -8.465274e-01, -1.219677e+00,
  206. -7.594163e-01, -1.202818e+00,
  207. -8.023823e-01, -1.211203e+00,
  208. -3.732519e-01, -1.121494e+00,
  209. -1.918373e-01, -1.079668e+00,
  210. -4.671988e-01, -1.142253e+00,
  211. -4.033645e-01, -1.128215e+00,
  212. -1.920740e-01, -1.079724e+00,
  213. -3.022157e-01, -1.105389e+00,
  214. -1.652831e-01, -1.073354e+00,
  215. +4.671625e-01, -9.085886e-01,
  216. +5.940178e-01, -8.721832e-01,
  217. +3.147557e-01, -9.508290e-01,
  218. +6.383631e-01, -8.591867e-01,
  219. +9.888923e-01, -7.514088e-01,
  220. +7.076339e-01, -8.386023e-01,
  221. +1.326682e+00, -6.386698e-01,
  222. +1.149834e+00, -6.988221e-01,
  223. +1.257742e+00, -6.624207e-01,
  224. +1.492352e+00, -5.799632e-01,
  225. +1.595574e+00, -5.421766e-01,
  226. +1.240173e+00, -6.684113e-01,
  227. +1.706612e+00, -5.004442e-01,
  228. +1.873984e+00, -4.353002e-01,
  229. +1.985633e+00, -3.902561e-01,
  230. +1.722880e+00, -4.942329e-01,
  231. +2.095182e+00, -3.447402e-01,
  232. +2.018118e+00, -3.768991e-01,
  233. +2.422702e+00, -1.999563e-01,
  234. +2.370611e+00, -2.239326e-01,
  235. +2.152154e+00, -3.205250e-01,
  236. +2.525121e+00, -1.516499e-01,
  237. +2.422116e+00, -2.002280e-01,
  238. +2.842806e+00, +9.536372e-03,
  239. +3.030128e+00, +1.146027e-01,
  240. +2.888424e+00, +3.433444e-02,
  241. +2.991609e+00, +9.226409e-02,
  242. +2.924807e+00, +5.445844e-02,
  243. +3.007772e+00, +1.015875e-01,
  244. +2.781973e+00, -2.282382e-02,
  245. +3.164737e+00, +1.961781e-01,
  246. +3.237671e+00, +2.430139e-01,
  247. +3.046123e+00, +1.240014e-01,
  248. +3.414834e+00, +3.669060e-01,
  249. +3.436591e+00, +3.833600e-01,
  250. +3.626207e+00, +5.444311e-01,
  251. +3.223325e+00, +2.336361e-01,
  252. +3.511963e+00, +4.431060e-01,
  253. +3.698380e+00, +6.187442e-01,
  254. +3.670244e+00, +5.884943e-01,
  255. +3.558833e+00, +4.828230e-01,
  256. +3.661807e+00, +5.797689e-01,
  257. +3.767261e+00, +7.030893e-01,
  258. +3.801065e+00, +7.532650e-01,
  259. +3.828523e+00, +8.024454e-01,
  260. +3.840719e+00, +8.287032e-01,
  261. +3.848748e+00, +8.485921e-01,
  262. +3.865801e+00, +9.066551e-01,
  263. +3.870983e+00, +9.404873e-01,
  264. +3.870263e+00, +1.001884e+00,
  265. +3.864462e+00, +1.032374e+00,
  266. +3.870542e+00, +9.996121e-01,
  267. +3.865424e+00, +1.028474e+00
  268. };
  269. // clang-format on
  270. ceres::ConstMatrixRef kY(kYData, kYRows, kYCols);
  271. class PointToLineSegmentContourCostFunction : public ceres::CostFunction {
  272. public:
  273. PointToLineSegmentContourCostFunction(const int num_segments,
  274. Eigen::Vector2d y)
  275. : num_segments_(num_segments), y_(std::move(y)) {
  276. // The first parameter is the preimage position.
  277. mutable_parameter_block_sizes()->push_back(1);
  278. // The next parameters are the control points for the line segment contour.
  279. for (int i = 0; i < num_segments_; ++i) {
  280. mutable_parameter_block_sizes()->push_back(2);
  281. }
  282. set_num_residuals(2);
  283. }
  284. bool Evaluate(const double* const* x,
  285. double* residuals,
  286. double** jacobians) const override {
  287. // Convert the preimage position `t` into a segment index `i0` and the
  288. // line segment interpolation parameter `u`. `i1` is the index of the next
  289. // control point.
  290. const double t = ModuloNumSegments(*x[0]);
  291. CHECK_GE(t, 0.0);
  292. CHECK_LT(t, num_segments_);
  293. const int i0 = floor(t), i1 = (i0 + 1) % num_segments_;
  294. const double u = t - i0;
  295. // Linearly interpolate between control points `i0` and `i1`.
  296. residuals[0] = y_[0] - ((1.0 - u) * x[1 + i0][0] + u * x[1 + i1][0]);
  297. residuals[1] = y_[1] - ((1.0 - u) * x[1 + i0][1] + u * x[1 + i1][1]);
  298. if (jacobians == nullptr) {
  299. return true;
  300. }
  301. if (jacobians[0] != nullptr) {
  302. jacobians[0][0] = x[1 + i0][0] - x[1 + i1][0];
  303. jacobians[0][1] = x[1 + i0][1] - x[1 + i1][1];
  304. }
  305. for (int i = 0; i < num_segments_; ++i) {
  306. if (jacobians[i + 1] != nullptr) {
  307. ceres::MatrixRef(jacobians[i + 1], 2, 2).setZero();
  308. if (i == i0) {
  309. jacobians[i + 1][0] = -(1.0 - u);
  310. jacobians[i + 1][3] = -(1.0 - u);
  311. } else if (i == i1) {
  312. jacobians[i + 1][0] = -u;
  313. jacobians[i + 1][3] = -u;
  314. }
  315. }
  316. }
  317. return true;
  318. }
  319. static ceres::CostFunction* Create(const int num_segments,
  320. const Eigen::Vector2d& y) {
  321. return new PointToLineSegmentContourCostFunction(num_segments, y);
  322. }
  323. private:
  324. inline double ModuloNumSegments(const double t) const {
  325. return t - num_segments_ * floor(t / num_segments_);
  326. }
  327. const int num_segments_;
  328. const Eigen::Vector2d y_;
  329. };
  330. class EuclideanDistanceFunctor {
  331. public:
  332. explicit EuclideanDistanceFunctor(const double& sqrt_weight)
  333. : sqrt_weight_(sqrt_weight) {}
  334. template <typename T>
  335. bool operator()(const T* x0, const T* x1, T* residuals) const {
  336. residuals[0] = sqrt_weight_ * (x0[0] - x1[0]);
  337. residuals[1] = sqrt_weight_ * (x0[1] - x1[1]);
  338. return true;
  339. }
  340. static ceres::CostFunction* Create(const double sqrt_weight) {
  341. return new ceres::AutoDiffCostFunction<EuclideanDistanceFunctor, 2, 2, 2>(
  342. new EuclideanDistanceFunctor(sqrt_weight));
  343. }
  344. private:
  345. const double sqrt_weight_;
  346. };
  347. static bool SolveWithFullReport(ceres::Solver::Options options,
  348. ceres::Problem* problem,
  349. bool dynamic_sparsity) {
  350. options.dynamic_sparsity = dynamic_sparsity;
  351. ceres::Solver::Summary summary;
  352. ceres::Solve(options, problem, &summary);
  353. std::cout << "####################" << std::endl;
  354. std::cout << "dynamic_sparsity = " << dynamic_sparsity << std::endl;
  355. std::cout << "####################" << std::endl;
  356. std::cout << summary.FullReport() << std::endl;
  357. return summary.termination_type == ceres::CONVERGENCE;
  358. }
  359. int main(int argc, char** argv) {
  360. google::InitGoogleLogging(argv[0]);
  361. // Problem configuration.
  362. const int num_segments = 151;
  363. const double regularization_weight = 1e-2;
  364. // Eigen::MatrixXd is column major so we define our own MatrixXd which is
  365. // row major. Eigen::VectorXd can be used directly.
  366. using MatrixXd =
  367. Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>;
  368. using Eigen::VectorXd;
  369. // `X` is the matrix of control points which make up the contour of line
  370. // segments. The number of control points is equal to the number of line
  371. // segments because the contour is closed.
  372. //
  373. // Initialize `X` to points on the unit circle.
  374. VectorXd w(num_segments + 1);
  375. w.setLinSpaced(num_segments + 1, 0.0, 2.0 * M_PI);
  376. w.conservativeResize(num_segments);
  377. MatrixXd X(num_segments, 2);
  378. X.col(0) = w.array().cos();
  379. X.col(1) = w.array().sin();
  380. // Each data point has an associated preimage position on the line segment
  381. // contour. For each data point we initialize the preimage positions to
  382. // the index of the closest control point.
  383. const int64_t num_observations = kY.rows();
  384. VectorXd t(num_observations);
  385. for (int64_t i = 0; i < num_observations; ++i) {
  386. (X.rowwise() - kY.row(i)).rowwise().squaredNorm().minCoeff(&t[i]);
  387. }
  388. ceres::Problem problem;
  389. // For each data point add a residual which measures its distance to its
  390. // corresponding position on the line segment contour.
  391. std::vector<double*> parameter_blocks(1 + num_segments);
  392. parameter_blocks[0] = nullptr;
  393. for (int i = 0; i < num_segments; ++i) {
  394. parameter_blocks[i + 1] = X.data() + 2 * i;
  395. }
  396. for (int i = 0; i < num_observations; ++i) {
  397. parameter_blocks[0] = &t[i];
  398. problem.AddResidualBlock(
  399. PointToLineSegmentContourCostFunction::Create(num_segments, kY.row(i)),
  400. nullptr,
  401. parameter_blocks);
  402. }
  403. // Add regularization to minimize the length of the line segment contour.
  404. for (int i = 0; i < num_segments; ++i) {
  405. problem.AddResidualBlock(
  406. EuclideanDistanceFunctor::Create(sqrt(regularization_weight)),
  407. nullptr,
  408. X.data() + 2 * i,
  409. X.data() + 2 * ((i + 1) % num_segments));
  410. }
  411. ceres::Solver::Options options;
  412. options.max_num_iterations = 100;
  413. options.linear_solver_type = ceres::SPARSE_NORMAL_CHOLESKY;
  414. // First, solve `X` and `t` jointly with dynamic_sparsity = true.
  415. MatrixXd X0 = X;
  416. VectorXd t0 = t;
  417. CHECK(SolveWithFullReport(options, &problem, true));
  418. // Second, solve with dynamic_sparsity = false.
  419. X = X0;
  420. t = t0;
  421. CHECK(SolveWithFullReport(options, &problem, false));
  422. return 0;
  423. }