123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2015 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: strandmark@google.com (Petter Strandmark)
- //
- // Denoising using Fields of Experts and the Ceres minimizer.
- //
- // Note that for good denoising results the weighting between the data term
- // and the Fields of Experts term needs to be adjusted. This is discussed
- // in [1]. This program assumes Gaussian noise. The noise model can be changed
- // by substituting another function for QuadraticCostFunction.
- //
- // [1] S. Roth and M.J. Black. "Fields of Experts." International Journal of
- // Computer Vision, 82(2):205--229, 2009.
- #include <algorithm>
- #include <cmath>
- #include <iostream>
- #include <random>
- #include <sstream>
- #include <string>
- #include <vector>
- #include "ceres/ceres.h"
- #include "fields_of_experts.h"
- #include "gflags/gflags.h"
- #include "glog/logging.h"
- #include "pgm_image.h"
- DEFINE_string(input, "", "File to which the output image should be written");
- DEFINE_string(foe_file, "", "FoE file to use");
- DEFINE_string(output, "", "File to which the output image should be written");
- DEFINE_double(sigma, 20.0, "Standard deviation of noise");
- DEFINE_string(trust_region_strategy,
- "levenberg_marquardt",
- "Options are: levenberg_marquardt, dogleg.");
- DEFINE_string(dogleg,
- "traditional_dogleg",
- "Options are: traditional_dogleg,"
- "subspace_dogleg.");
- DEFINE_string(linear_solver,
- "sparse_normal_cholesky",
- "Options are: "
- "sparse_normal_cholesky and cgnr.");
- DEFINE_string(preconditioner,
- "jacobi",
- "Options are: "
- "identity, jacobi, subset");
- DEFINE_string(sparse_linear_algebra_library,
- "suite_sparse",
- "Options are: suite_sparse, cx_sparse and eigen_sparse");
- DEFINE_double(eta,
- 1e-2,
- "Default value for eta. Eta determines the "
- "accuracy of each linear solve of the truncated newton step. "
- "Changing this parameter can affect solve performance.");
- DEFINE_int32(num_threads, 1, "Number of threads.");
- DEFINE_int32(num_iterations, 10, "Number of iterations.");
- DEFINE_bool(nonmonotonic_steps,
- false,
- "Trust region algorithm can use"
- " nonmonotic steps.");
- DEFINE_bool(inner_iterations,
- false,
- "Use inner iterations to non-linearly "
- "refine each successful trust region step.");
- DEFINE_bool(mixed_precision_solves, false, "Use mixed precision solves.");
- DEFINE_int32(max_num_refinement_iterations,
- 0,
- "Iterative refinement iterations");
- DEFINE_bool(line_search,
- false,
- "Use a line search instead of trust region "
- "algorithm.");
- DEFINE_double(subset_fraction,
- 0.2,
- "The fraction of residual blocks to use for the"
- " subset preconditioner.");
- namespace ceres::examples {
- namespace {
- // This cost function is used to build the data term.
- //
- // f_i(x) = a * (x_i - b)^2
- //
- class QuadraticCostFunction : public ceres::SizedCostFunction<1, 1> {
- public:
- QuadraticCostFunction(double a, double b) : sqrta_(std::sqrt(a)), b_(b) {}
- bool Evaluate(double const* const* parameters,
- double* residuals,
- double** jacobians) const override {
- const double x = parameters[0][0];
- residuals[0] = sqrta_ * (x - b_);
- if (jacobians != nullptr && jacobians[0] != nullptr) {
- jacobians[0][0] = sqrta_;
- }
- return true;
- }
- private:
- double sqrta_, b_;
- };
- // Creates a Fields of Experts MAP inference problem.
- void CreateProblem(const FieldsOfExperts& foe,
- const PGMImage<double>& image,
- Problem* problem,
- PGMImage<double>* solution) {
- // Create the data term
- CHECK_GT(CERES_GET_FLAG(FLAGS_sigma), 0.0);
- const double coefficient =
- 1 / (2.0 * CERES_GET_FLAG(FLAGS_sigma) * CERES_GET_FLAG(FLAGS_sigma));
- for (int index = 0; index < image.NumPixels(); ++index) {
- ceres::CostFunction* cost_function = new QuadraticCostFunction(
- coefficient, image.PixelFromLinearIndex(index));
- problem->AddResidualBlock(
- cost_function, nullptr, solution->MutablePixelFromLinearIndex(index));
- }
- // Create Ceres cost and loss functions for regularization. One is needed for
- // each filter.
- std::vector<ceres::LossFunction*> loss_function(foe.NumFilters());
- std::vector<ceres::CostFunction*> cost_function(foe.NumFilters());
- for (int alpha_index = 0; alpha_index < foe.NumFilters(); ++alpha_index) {
- loss_function[alpha_index] = foe.NewLossFunction(alpha_index);
- cost_function[alpha_index] = foe.NewCostFunction(alpha_index);
- }
- // Add FoE regularization for each patch in the image.
- for (int x = 0; x < image.width() - (foe.Size() - 1); ++x) {
- for (int y = 0; y < image.height() - (foe.Size() - 1); ++y) {
- // Build a vector with the pixel indices of this patch.
- std::vector<double*> pixels;
- const std::vector<int>& x_delta_indices = foe.GetXDeltaIndices();
- const std::vector<int>& y_delta_indices = foe.GetYDeltaIndices();
- for (int i = 0; i < foe.NumVariables(); ++i) {
- double* pixel = solution->MutablePixel(x + x_delta_indices[i],
- y + y_delta_indices[i]);
- pixels.push_back(pixel);
- }
- // For this patch with coordinates (x, y), we will add foe.NumFilters()
- // terms to the objective function.
- for (int alpha_index = 0; alpha_index < foe.NumFilters(); ++alpha_index) {
- problem->AddResidualBlock(
- cost_function[alpha_index], loss_function[alpha_index], pixels);
- }
- }
- }
- }
- void SetLinearSolver(Solver::Options* options) {
- CHECK(StringToLinearSolverType(CERES_GET_FLAG(FLAGS_linear_solver),
- &options->linear_solver_type));
- CHECK(StringToPreconditionerType(CERES_GET_FLAG(FLAGS_preconditioner),
- &options->preconditioner_type));
- CHECK(StringToSparseLinearAlgebraLibraryType(
- CERES_GET_FLAG(FLAGS_sparse_linear_algebra_library),
- &options->sparse_linear_algebra_library_type));
- options->use_mixed_precision_solves =
- CERES_GET_FLAG(FLAGS_mixed_precision_solves);
- options->max_num_refinement_iterations =
- CERES_GET_FLAG(FLAGS_max_num_refinement_iterations);
- }
- void SetMinimizerOptions(Solver::Options* options) {
- options->max_num_iterations = CERES_GET_FLAG(FLAGS_num_iterations);
- options->minimizer_progress_to_stdout = true;
- options->num_threads = CERES_GET_FLAG(FLAGS_num_threads);
- options->eta = CERES_GET_FLAG(FLAGS_eta);
- options->use_nonmonotonic_steps = CERES_GET_FLAG(FLAGS_nonmonotonic_steps);
- if (CERES_GET_FLAG(FLAGS_line_search)) {
- options->minimizer_type = ceres::LINE_SEARCH;
- }
- CHECK(StringToTrustRegionStrategyType(
- CERES_GET_FLAG(FLAGS_trust_region_strategy),
- &options->trust_region_strategy_type));
- CHECK(
- StringToDoglegType(CERES_GET_FLAG(FLAGS_dogleg), &options->dogleg_type));
- options->use_inner_iterations = CERES_GET_FLAG(FLAGS_inner_iterations);
- }
- // Solves the FoE problem using Ceres and post-processes it to make sure the
- // solution stays within [0, 255].
- void SolveProblem(Problem* problem, PGMImage<double>* solution) {
- // These parameters may be experimented with. For example, ceres::DOGLEG tends
- // to be faster for 2x2 filters, but gives solutions with slightly higher
- // objective function value.
- ceres::Solver::Options options;
- SetMinimizerOptions(&options);
- SetLinearSolver(&options);
- options.function_tolerance = 1e-3; // Enough for denoising.
- if (options.linear_solver_type == ceres::CGNR &&
- options.preconditioner_type == ceres::SUBSET) {
- std::vector<ResidualBlockId> residual_blocks;
- problem->GetResidualBlocks(&residual_blocks);
- // To use the SUBSET preconditioner we need to provide a list of
- // residual blocks (rows of the Jacobian). The denoising problem
- // has fairly general sparsity, and there is no apriori reason to
- // select one residual block over another, so we will randomly
- // subsample the residual blocks with probability subset_fraction.
- std::default_random_engine engine;
- std::uniform_real_distribution<> distribution(0, 1); // rage 0 - 1
- for (auto residual_block : residual_blocks) {
- if (distribution(engine) <= CERES_GET_FLAG(FLAGS_subset_fraction)) {
- options.residual_blocks_for_subset_preconditioner.insert(
- residual_block);
- }
- }
- }
- ceres::Solver::Summary summary;
- ceres::Solve(options, problem, &summary);
- std::cout << summary.FullReport() << "\n";
- // Make the solution stay in [0, 255].
- for (int x = 0; x < solution->width(); ++x) {
- for (int y = 0; y < solution->height(); ++y) {
- *solution->MutablePixel(x, y) =
- std::min(255.0, std::max(0.0, solution->Pixel(x, y)));
- }
- }
- }
- } // namespace
- } // namespace ceres::examples
- int main(int argc, char** argv) {
- using namespace ceres::examples;
- GFLAGS_NAMESPACE::ParseCommandLineFlags(&argc, &argv, true);
- google::InitGoogleLogging(argv[0]);
- if (CERES_GET_FLAG(FLAGS_input).empty()) {
- std::cerr << "Please provide an image file name using -input.\n";
- return 1;
- }
- if (CERES_GET_FLAG(FLAGS_foe_file).empty()) {
- std::cerr << "Please provide a Fields of Experts file name using -foe_file."
- "\n";
- return 1;
- }
- // Load the Fields of Experts filters from file.
- FieldsOfExperts foe;
- if (!foe.LoadFromFile(CERES_GET_FLAG(FLAGS_foe_file))) {
- std::cerr << "Loading \"" << CERES_GET_FLAG(FLAGS_foe_file)
- << "\" failed.\n";
- return 2;
- }
- // Read the images
- PGMImage<double> image(CERES_GET_FLAG(FLAGS_input));
- if (image.width() == 0) {
- std::cerr << "Reading \"" << CERES_GET_FLAG(FLAGS_input) << "\" failed.\n";
- return 3;
- }
- PGMImage<double> solution(image.width(), image.height());
- solution.Set(0.0);
- ceres::Problem problem;
- CreateProblem(foe, image, &problem, &solution);
- SolveProblem(&problem, &solution);
- if (!CERES_GET_FLAG(FLAGS_output).empty()) {
- CHECK(solution.WriteToFile(CERES_GET_FLAG(FLAGS_output)))
- << "Writing \"" << CERES_GET_FLAG(FLAGS_output) << "\" failed.";
- }
- return 0;
- }
|