123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2015 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: keir@google.com (Keir Mierle)
- //
- // This fits circles to a collection of points, where the error is related to
- // the distance of a point from the circle. This uses auto-differentiation to
- // take the derivatives.
- //
- // The input format is simple text. Feed on standard in:
- //
- // x_initial y_initial r_initial
- // x1 y1
- // x2 y2
- // y3 y3
- // ...
- //
- // And the result after solving will be printed to stdout:
- //
- // x y r
- //
- // There are closed form solutions [1] to this problem which you may want to
- // consider instead of using this one. If you already have a decent guess, Ceres
- // can squeeze down the last bit of error.
- //
- // [1] http://www.mathworks.com/matlabcentral/fileexchange/5557-circle-fit/content/circfit.m // NOLINT
- #include <cstdio>
- #include <vector>
- #include "ceres/ceres.h"
- #include "gflags/gflags.h"
- #include "glog/logging.h"
- using ceres::AutoDiffCostFunction;
- using ceres::CauchyLoss;
- using ceres::CostFunction;
- using ceres::LossFunction;
- using ceres::Problem;
- using ceres::Solve;
- using ceres::Solver;
- DEFINE_double(robust_threshold,
- 0.0,
- "Robust loss parameter. Set to 0 for normal squared error (no "
- "robustification).");
- // The cost for a single sample. The returned residual is related to the
- // distance of the point from the circle (passed in as x, y, m parameters).
- //
- // Note that the radius is parameterized as r = m^2 to constrain the radius to
- // positive values.
- class DistanceFromCircleCost {
- public:
- DistanceFromCircleCost(double xx, double yy) : xx_(xx), yy_(yy) {}
- template <typename T>
- bool operator()(const T* const x,
- const T* const y,
- const T* const m, // r = m^2
- T* residual) const {
- // Since the radius is parameterized as m^2, unpack m to get r.
- T r = *m * *m;
- // Get the position of the sample in the circle's coordinate system.
- T xp = xx_ - *x;
- T yp = yy_ - *y;
- // It is tempting to use the following cost:
- //
- // residual[0] = r - sqrt(xp*xp + yp*yp);
- //
- // which is the distance of the sample from the circle. This works
- // reasonably well, but the sqrt() adds strong nonlinearities to the cost
- // function. Instead, a different cost is used, which while not strictly a
- // distance in the metric sense (it has units distance^2) it produces more
- // robust fits when there are outliers. This is because the cost surface is
- // more convex.
- residual[0] = r * r - xp * xp - yp * yp;
- return true;
- }
- private:
- // The measured x,y coordinate that should be on the circle.
- double xx_, yy_;
- };
- int main(int argc, char** argv) {
- GFLAGS_NAMESPACE::ParseCommandLineFlags(&argc, &argv, true);
- google::InitGoogleLogging(argv[0]);
- double x, y, r;
- if (scanf("%lg %lg %lg", &x, &y, &r) != 3) {
- fprintf(stderr, "Couldn't read first line.\n");
- return 1;
- }
- fprintf(stderr, "Got x, y, r %lg, %lg, %lg\n", x, y, r);
- // Save initial values for comparison.
- double initial_x = x;
- double initial_y = y;
- double initial_r = r;
- // Parameterize r as m^2 so that it can't be negative.
- double m = sqrt(r);
- Problem problem;
- // Configure the loss function.
- LossFunction* loss = nullptr;
- if (CERES_GET_FLAG(FLAGS_robust_threshold)) {
- loss = new CauchyLoss(CERES_GET_FLAG(FLAGS_robust_threshold));
- }
- // Add the residuals.
- double xx, yy;
- int num_points = 0;
- while (scanf("%lf %lf\n", &xx, &yy) == 2) {
- CostFunction* cost =
- new AutoDiffCostFunction<DistanceFromCircleCost, 1, 1, 1, 1>(
- new DistanceFromCircleCost(xx, yy));
- problem.AddResidualBlock(cost, loss, &x, &y, &m);
- num_points++;
- }
- std::cout << "Got " << num_points << " points.\n";
- // Build and solve the problem.
- Solver::Options options;
- options.max_num_iterations = 500;
- options.linear_solver_type = ceres::DENSE_QR;
- Solver::Summary summary;
- Solve(options, &problem, &summary);
- // Recover r from m.
- r = m * m;
- std::cout << summary.BriefReport() << "\n";
- std::cout << "x : " << initial_x << " -> " << x << "\n";
- std::cout << "y : " << initial_y << " -> " << y << "\n";
- std::cout << "r : " << initial_r << " -> " << r << "\n";
- return 0;
- }
|