123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2022 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: sameeragarwal@google.com (Sameer Agarwal)
- #include "bal_problem.h"
- #include <algorithm>
- #include <cstdio>
- #include <fstream>
- #include <functional>
- #include <random>
- #include <string>
- #include <vector>
- #include "Eigen/Core"
- #include "ceres/rotation.h"
- #include "glog/logging.h"
- namespace ceres::examples {
- namespace {
- using VectorRef = Eigen::Map<Eigen::VectorXd>;
- using ConstVectorRef = Eigen::Map<const Eigen::VectorXd>;
- template <typename T>
- void FscanfOrDie(FILE* fptr, const char* format, T* value) {
- int num_scanned = fscanf(fptr, format, value);
- if (num_scanned != 1) {
- LOG(FATAL) << "Invalid UW data file.";
- }
- }
- void PerturbPoint3(std::function<double()> dist, double* point) {
- for (int i = 0; i < 3; ++i) {
- point[i] += dist();
- }
- }
- double Median(std::vector<double>* data) {
- auto mid_point = data->begin() + data->size() / 2;
- std::nth_element(data->begin(), mid_point, data->end());
- return *mid_point;
- }
- } // namespace
- BALProblem::BALProblem(const std::string& filename, bool use_quaternions) {
- FILE* fptr = fopen(filename.c_str(), "r");
- if (fptr == nullptr) {
- LOG(FATAL) << "Error: unable to open file " << filename;
- return;
- };
- // This will die horribly on invalid files. Them's the breaks.
- FscanfOrDie(fptr, "%d", &num_cameras_);
- FscanfOrDie(fptr, "%d", &num_points_);
- FscanfOrDie(fptr, "%d", &num_observations_);
- VLOG(1) << "Header: " << num_cameras_ << " " << num_points_ << " "
- << num_observations_;
- point_index_ = new int[num_observations_];
- camera_index_ = new int[num_observations_];
- observations_ = new double[2 * num_observations_];
- num_parameters_ = 9 * num_cameras_ + 3 * num_points_;
- parameters_ = new double[num_parameters_];
- for (int i = 0; i < num_observations_; ++i) {
- FscanfOrDie(fptr, "%d", camera_index_ + i);
- FscanfOrDie(fptr, "%d", point_index_ + i);
- for (int j = 0; j < 2; ++j) {
- FscanfOrDie(fptr, "%lf", observations_ + 2 * i + j);
- }
- }
- for (int i = 0; i < num_parameters_; ++i) {
- FscanfOrDie(fptr, "%lf", parameters_ + i);
- }
- fclose(fptr);
- use_quaternions_ = use_quaternions;
- if (use_quaternions) {
- // Switch the angle-axis rotations to quaternions.
- num_parameters_ = 10 * num_cameras_ + 3 * num_points_;
- auto* quaternion_parameters = new double[num_parameters_];
- double* original_cursor = parameters_;
- double* quaternion_cursor = quaternion_parameters;
- for (int i = 0; i < num_cameras_; ++i) {
- AngleAxisToQuaternion(original_cursor, quaternion_cursor);
- quaternion_cursor += 4;
- original_cursor += 3;
- for (int j = 4; j < 10; ++j) {
- *quaternion_cursor++ = *original_cursor++;
- }
- }
- // Copy the rest of the points.
- for (int i = 0; i < 3 * num_points_; ++i) {
- *quaternion_cursor++ = *original_cursor++;
- }
- // Swap in the quaternion parameters.
- delete[] parameters_;
- parameters_ = quaternion_parameters;
- }
- }
- // This function writes the problem to a file in the same format that
- // is read by the constructor.
- void BALProblem::WriteToFile(const std::string& filename) const {
- FILE* fptr = fopen(filename.c_str(), "w");
- if (fptr == nullptr) {
- LOG(FATAL) << "Error: unable to open file " << filename;
- return;
- };
- fprintf(fptr, "%d %d %d\n", num_cameras_, num_points_, num_observations_);
- for (int i = 0; i < num_observations_; ++i) {
- fprintf(fptr, "%d %d", camera_index_[i], point_index_[i]);
- for (int j = 0; j < 2; ++j) {
- fprintf(fptr, " %g", observations_[2 * i + j]);
- }
- fprintf(fptr, "\n");
- }
- for (int i = 0; i < num_cameras(); ++i) {
- double angleaxis[9];
- if (use_quaternions_) {
- // Output in angle-axis format.
- QuaternionToAngleAxis(parameters_ + 10 * i, angleaxis);
- memcpy(angleaxis + 3, parameters_ + 10 * i + 4, 6 * sizeof(double));
- } else {
- memcpy(angleaxis, parameters_ + 9 * i, 9 * sizeof(double));
- }
- for (double coeff : angleaxis) {
- fprintf(fptr, "%.16g\n", coeff);
- }
- }
- const double* points = parameters_ + camera_block_size() * num_cameras_;
- for (int i = 0; i < num_points(); ++i) {
- const double* point = points + i * point_block_size();
- for (int j = 0; j < point_block_size(); ++j) {
- fprintf(fptr, "%.16g\n", point[j]);
- }
- }
- fclose(fptr);
- }
- // Write the problem to a PLY file for inspection in Meshlab or CloudCompare.
- void BALProblem::WriteToPLYFile(const std::string& filename) const {
- std::ofstream of(filename.c_str());
- of << "ply" << '\n'
- << "format ascii 1.0" << '\n'
- << "element vertex " << num_cameras_ + num_points_ << '\n'
- << "property float x" << '\n'
- << "property float y" << '\n'
- << "property float z" << '\n'
- << "property uchar red" << '\n'
- << "property uchar green" << '\n'
- << "property uchar blue" << '\n'
- << "end_header" << std::endl;
- // Export extrinsic data (i.e. camera centers) as green points.
- double angle_axis[3];
- double center[3];
- for (int i = 0; i < num_cameras(); ++i) {
- const double* camera = cameras() + camera_block_size() * i;
- CameraToAngleAxisAndCenter(camera, angle_axis, center);
- of << center[0] << ' ' << center[1] << ' ' << center[2] << " 0 255 0"
- << '\n';
- }
- // Export the structure (i.e. 3D Points) as white points.
- const double* points = parameters_ + camera_block_size() * num_cameras_;
- for (int i = 0; i < num_points(); ++i) {
- const double* point = points + i * point_block_size();
- for (int j = 0; j < point_block_size(); ++j) {
- of << point[j] << ' ';
- }
- of << "255 255 255\n";
- }
- of.close();
- }
- void BALProblem::CameraToAngleAxisAndCenter(const double* camera,
- double* angle_axis,
- double* center) const {
- VectorRef angle_axis_ref(angle_axis, 3);
- if (use_quaternions_) {
- QuaternionToAngleAxis(camera, angle_axis);
- } else {
- angle_axis_ref = ConstVectorRef(camera, 3);
- }
- // c = -R't
- Eigen::VectorXd inverse_rotation = -angle_axis_ref;
- AngleAxisRotatePoint(
- inverse_rotation.data(), camera + camera_block_size() - 6, center);
- VectorRef(center, 3) *= -1.0;
- }
- void BALProblem::AngleAxisAndCenterToCamera(const double* angle_axis,
- const double* center,
- double* camera) const {
- ConstVectorRef angle_axis_ref(angle_axis, 3);
- if (use_quaternions_) {
- AngleAxisToQuaternion(angle_axis, camera);
- } else {
- VectorRef(camera, 3) = angle_axis_ref;
- }
- // t = -R * c
- AngleAxisRotatePoint(angle_axis, center, camera + camera_block_size() - 6);
- VectorRef(camera + camera_block_size() - 6, 3) *= -1.0;
- }
- void BALProblem::Normalize() {
- // Compute the marginal median of the geometry.
- std::vector<double> tmp(num_points_);
- Eigen::Vector3d median;
- double* points = mutable_points();
- for (int i = 0; i < 3; ++i) {
- for (int j = 0; j < num_points_; ++j) {
- tmp[j] = points[3 * j + i];
- }
- median(i) = Median(&tmp);
- }
- for (int i = 0; i < num_points_; ++i) {
- VectorRef point(points + 3 * i, 3);
- tmp[i] = (point - median).lpNorm<1>();
- }
- const double median_absolute_deviation = Median(&tmp);
- // Scale so that the median absolute deviation of the resulting
- // reconstruction is 100.
- const double scale = 100.0 / median_absolute_deviation;
- VLOG(2) << "median: " << median.transpose();
- VLOG(2) << "median absolute deviation: " << median_absolute_deviation;
- VLOG(2) << "scale: " << scale;
- // X = scale * (X - median)
- for (int i = 0; i < num_points_; ++i) {
- VectorRef point(points + 3 * i, 3);
- point = scale * (point - median);
- }
- double* cameras = mutable_cameras();
- double angle_axis[3];
- double center[3];
- for (int i = 0; i < num_cameras_; ++i) {
- double* camera = cameras + camera_block_size() * i;
- CameraToAngleAxisAndCenter(camera, angle_axis, center);
- // center = scale * (center - median)
- VectorRef(center, 3) = scale * (VectorRef(center, 3) - median);
- AngleAxisAndCenterToCamera(angle_axis, center, camera);
- }
- }
- void BALProblem::Perturb(const double rotation_sigma,
- const double translation_sigma,
- const double point_sigma) {
- CHECK_GE(point_sigma, 0.0);
- CHECK_GE(rotation_sigma, 0.0);
- CHECK_GE(translation_sigma, 0.0);
- std::mt19937 prng;
- std::normal_distribution<double> point_noise_distribution(0.0, point_sigma);
- double* points = mutable_points();
- if (point_sigma > 0) {
- for (int i = 0; i < num_points_; ++i) {
- PerturbPoint3(std::bind(point_noise_distribution, std::ref(prng)),
- points + 3 * i);
- }
- }
- std::normal_distribution<double> rotation_noise_distribution(0.0,
- point_sigma);
- std::normal_distribution<double> translation_noise_distribution(
- 0.0, translation_sigma);
- for (int i = 0; i < num_cameras_; ++i) {
- double* camera = mutable_cameras() + camera_block_size() * i;
- double angle_axis[3];
- double center[3];
- // Perturb in the rotation of the camera in the angle-axis
- // representation.
- CameraToAngleAxisAndCenter(camera, angle_axis, center);
- if (rotation_sigma > 0.0) {
- PerturbPoint3(std::bind(rotation_noise_distribution, std::ref(prng)),
- angle_axis);
- }
- AngleAxisAndCenterToCamera(angle_axis, center, camera);
- if (translation_sigma > 0.0) {
- PerturbPoint3(std::bind(translation_noise_distribution, std::ref(prng)),
- camera + camera_block_size() - 6);
- }
- }
- }
- BALProblem::~BALProblem() {
- delete[] point_index_;
- delete[] camera_index_;
- delete[] observations_;
- delete[] parameters_;
- }
- } // namespace ceres::examples
|