123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472 |
- #!/usr/bin/env python3
- '''
- You can download the Geometric Matching Module model from https://www.dropbox.com/s/tyhc73xa051grjp/cp_vton_gmm.onnx?dl=0
- You can download the Try-On Module model from https://www.dropbox.com/s/q2x97ve2h53j66k/cp_vton_tom.onnx?dl=0
- You can download the cloth segmentation model from https://www.dropbox.com/s/qag9vzambhhkvxr/lip_jppnet_384.pb?dl=0
- You can find the OpenPose proto in opencv_extra/testdata/dnn/openpose_pose_coco.prototxt
- and get .caffemodel using opencv_extra/testdata/dnn/download_models.py
- '''
- import argparse
- import os.path
- import numpy as np
- import cv2 as cv
- from numpy import linalg
- from common import findFile
- from human_parsing import parse_human
- backends = (cv.dnn.DNN_BACKEND_DEFAULT, cv.dnn.DNN_BACKEND_HALIDE, cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_BACKEND_OPENCV,
- cv.dnn.DNN_BACKEND_VKCOM, cv.dnn.DNN_BACKEND_CUDA)
- targets = (cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_OPENCL, cv.dnn.DNN_TARGET_OPENCL_FP16, cv.dnn.DNN_TARGET_MYRIAD, cv.dnn.DNN_TARGET_HDDL,
- cv.dnn.DNN_TARGET_VULKAN, cv.dnn.DNN_TARGET_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16)
- parser = argparse.ArgumentParser(description='Use this script to run virtial try-on using CP-VTON',
- formatter_class=argparse.ArgumentDefaultsHelpFormatter)
- parser.add_argument('--input_image', '-i', required=True, help='Path to image with person.')
- parser.add_argument('--input_cloth', '-c', required=True, help='Path to target cloth image')
- parser.add_argument('--gmm_model', '-gmm', default='cp_vton_gmm.onnx', help='Path to Geometric Matching Module .onnx model.')
- parser.add_argument('--tom_model', '-tom', default='cp_vton_tom.onnx', help='Path to Try-On Module .onnx model.')
- parser.add_argument('--segmentation_model', default='lip_jppnet_384.pb', help='Path to cloth segmentation .pb model.')
- parser.add_argument('--openpose_proto', default='openpose_pose_coco.prototxt', help='Path to OpenPose .prototxt model was trained on COCO dataset.')
- parser.add_argument('--openpose_model', default='openpose_pose_coco.caffemodel', help='Path to OpenPose .caffemodel model was trained on COCO dataset.')
- parser.add_argument('--backend', choices=backends, default=cv.dnn.DNN_BACKEND_DEFAULT, type=int,
- help="Choose one of computation backends: "
- "%d: automatically (by default), "
- "%d: Halide language (http://halide-lang.org/), "
- "%d: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
- "%d: OpenCV implementation, "
- "%d: VKCOM, "
- "%d: CUDA" % backends)
- parser.add_argument('--target', choices=targets, default=cv.dnn.DNN_TARGET_CPU, type=int,
- help='Choose one of target computation devices: '
- '%d: CPU target (by default), '
- '%d: OpenCL, '
- '%d: OpenCL fp16 (half-float precision), '
- '%d: NCS2 VPU, '
- '%d: HDDL VPU, '
- '%d: Vulkan, '
- '%d: CUDA, '
- '%d: CUDA fp16 (half-float preprocess)'% targets)
- args, _ = parser.parse_known_args()
- def get_pose_map(image, proto_path, model_path, backend, target, height=256, width=192):
- radius = 5
- inp = cv.dnn.blobFromImage(image, 1.0 / 255, (width, height))
- net = cv.dnn.readNet(proto_path, model_path)
- net.setPreferableBackend(backend)
- net.setPreferableTarget(target)
- net.setInput(inp)
- out = net.forward()
- threshold = 0.1
- _, out_c, out_h, out_w = out.shape
- pose_map = np.zeros((height, width, out_c - 1))
- # last label: Background
- for i in range(0, out.shape[1] - 1):
- heatMap = out[0, i, :, :]
- keypoint = np.full((height, width), -1)
- _, conf, _, point = cv.minMaxLoc(heatMap)
- x = width * point[0] // out_w
- y = height * point[1] // out_h
- if conf > threshold and x > 0 and y > 0:
- keypoint[y - radius:y + radius, x - radius:x + radius] = 1
- pose_map[:, :, i] = keypoint
- pose_map = pose_map.transpose(2, 0, 1)
- return pose_map
- class BilinearFilter(object):
- """
- PIL bilinear resize implementation
- image = image.resize((image_width // 16, image_height // 16), Image.BILINEAR)
- """
- def _precompute_coeffs(self, inSize, outSize):
- filterscale = max(1.0, inSize / outSize)
- ksize = int(np.ceil(filterscale)) * 2 + 1
- kk = np.zeros(shape=(outSize * ksize, ), dtype=np.float32)
- bounds = np.empty(shape=(outSize * 2, ), dtype=np.int32)
- centers = (np.arange(outSize) + 0.5) * filterscale + 0.5
- bounds[::2] = np.where(centers - filterscale < 0, 0, centers - filterscale)
- bounds[1::2] = np.where(centers + filterscale > inSize, inSize, centers + filterscale) - bounds[::2]
- xmins = bounds[::2] - centers + 1
- points = np.array([np.arange(row) + xmins[i] for i, row in enumerate(bounds[1::2])]) / filterscale
- for xx in range(0, outSize):
- point = points[xx]
- bilinear = np.where(point < 1.0, 1.0 - abs(point), 0.0)
- ww = np.sum(bilinear)
- kk[xx * ksize : xx * ksize + bilinear.size] = np.where(ww == 0.0, bilinear, bilinear / ww)
- return bounds, kk, ksize
- def _resample_horizontal(self, out, img, ksize, bounds, kk):
- for yy in range(0, out.shape[0]):
- for xx in range(0, out.shape[1]):
- xmin = bounds[xx * 2 + 0]
- xmax = bounds[xx * 2 + 1]
- k = kk[xx * ksize : xx * ksize + xmax]
- out[yy, xx] = np.round(np.sum(img[yy, xmin : xmin + xmax] * k))
- def _resample_vertical(self, out, img, ksize, bounds, kk):
- for yy in range(0, out.shape[0]):
- ymin = bounds[yy * 2 + 0]
- ymax = bounds[yy * 2 + 1]
- k = kk[yy * ksize: yy * ksize + ymax]
- out[yy] = np.round(np.sum(img[ymin : ymin + ymax, 0:out.shape[1]] * k[:, np.newaxis], axis=0))
- def imaging_resample(self, img, xsize, ysize):
- height, width = img.shape[0:2]
- bounds_horiz, kk_horiz, ksize_horiz = self._precompute_coeffs(width, xsize)
- bounds_vert, kk_vert, ksize_vert = self._precompute_coeffs(height, ysize)
- out_hor = np.empty((img.shape[0], xsize), dtype=np.uint8)
- self._resample_horizontal(out_hor, img, ksize_horiz, bounds_horiz, kk_horiz)
- out = np.empty((ysize, xsize), dtype=np.uint8)
- self._resample_vertical(out, out_hor, ksize_vert, bounds_vert, kk_vert)
- return out
- class CpVton(object):
- def __init__(self, gmm_model, tom_model, backend, target):
- super(CpVton, self).__init__()
- self.gmm_net = cv.dnn.readNet(gmm_model)
- self.tom_net = cv.dnn.readNet(tom_model)
- self.gmm_net.setPreferableBackend(backend)
- self.gmm_net.setPreferableTarget(target)
- self.tom_net.setPreferableBackend(backend)
- self.tom_net.setPreferableTarget(target)
- def prepare_agnostic(self, segm_image, input_image, pose_map, height=256, width=192):
- palette = {
- 'Background' : (0, 0, 0),
- 'Hat' : (128, 0, 0),
- 'Hair' : (255, 0, 0),
- 'Glove' : (0, 85, 0),
- 'Sunglasses' : (170, 0, 51),
- 'UpperClothes' : (255, 85, 0),
- 'Dress' : (0, 0, 85),
- 'Coat' : (0, 119, 221),
- 'Socks' : (85, 85, 0),
- 'Pants' : (0, 85, 85),
- 'Jumpsuits' : (85, 51, 0),
- 'Scarf' : (52, 86, 128),
- 'Skirt' : (0, 128, 0),
- 'Face' : (0, 0, 255),
- 'Left-arm' : (51, 170, 221),
- 'Right-arm' : (0, 255, 255),
- 'Left-leg' : (85, 255, 170),
- 'Right-leg' : (170, 255, 85),
- 'Left-shoe' : (255, 255, 0),
- 'Right-shoe' : (255, 170, 0)
- }
- color2label = {val: key for key, val in palette.items()}
- head_labels = ['Hat', 'Hair', 'Sunglasses', 'Face', 'Pants', 'Skirt']
- segm_image = cv.cvtColor(segm_image, cv.COLOR_BGR2RGB)
- phead = np.zeros((1, height, width), dtype=np.float32)
- pose_shape = np.zeros((height, width), dtype=np.uint8)
- for r in range(height):
- for c in range(width):
- pixel = tuple(segm_image[r, c])
- if tuple(pixel) in color2label:
- if color2label[pixel] in head_labels:
- phead[0, r, c] = 1
- if color2label[pixel] != 'Background':
- pose_shape[r, c] = 255
- input_image = cv.dnn.blobFromImage(input_image, 1.0 / 127.5, (width, height), mean=(127.5, 127.5, 127.5), swapRB=True)
- input_image = input_image.squeeze(0)
- img_head = input_image * phead - (1 - phead)
- downsample = BilinearFilter()
- down = downsample.imaging_resample(pose_shape, width // 16, height // 16)
- res_shape = cv.resize(down, (width, height), cv.INTER_LINEAR)
- res_shape = cv.dnn.blobFromImage(res_shape, 1.0 / 127.5, mean=(127.5, 127.5, 127.5), swapRB=True)
- res_shape = res_shape.squeeze(0)
- agnostic = np.concatenate((res_shape, img_head, pose_map), axis=0)
- agnostic = np.expand_dims(agnostic, axis=0)
- return agnostic.astype(np.float32)
- def get_warped_cloth(self, cloth_img, agnostic, height=256, width=192):
- cloth = cv.dnn.blobFromImage(cloth_img, 1.0 / 127.5, (width, height), mean=(127.5, 127.5, 127.5), swapRB=True)
- self.gmm_net.setInput(agnostic, "input.1")
- self.gmm_net.setInput(cloth, "input.18")
- theta = self.gmm_net.forward()
- grid = self._generate_grid(theta)
- warped_cloth = self._bilinear_sampler(cloth, grid).astype(np.float32)
- return warped_cloth
- def get_tryon(self, agnostic, warp_cloth):
- inp = np.concatenate([agnostic, warp_cloth], axis=1)
- self.tom_net.setInput(inp)
- out = self.tom_net.forward()
- p_rendered, m_composite = np.split(out, [3], axis=1)
- p_rendered = np.tanh(p_rendered)
- m_composite = 1 / (1 + np.exp(-m_composite))
- p_tryon = warp_cloth * m_composite + p_rendered * (1 - m_composite)
- rgb_p_tryon = cv.cvtColor(p_tryon.squeeze(0).transpose(1, 2, 0), cv.COLOR_BGR2RGB)
- rgb_p_tryon = (rgb_p_tryon + 1) / 2
- return rgb_p_tryon
- def _compute_L_inverse(self, X, Y):
- N = X.shape[0]
- Xmat = np.tile(X, (1, N))
- Ymat = np.tile(Y, (1, N))
- P_dist_squared = np.power(Xmat - Xmat.transpose(1, 0), 2) + np.power(Ymat - Ymat.transpose(1, 0), 2)
- P_dist_squared[P_dist_squared == 0] = 1
- K = np.multiply(P_dist_squared, np.log(P_dist_squared))
- O = np.ones([N, 1], dtype=np.float32)
- Z = np.zeros([3, 3], dtype=np.float32)
- P = np.concatenate([O, X, Y], axis=1)
- first = np.concatenate((K, P), axis=1)
- second = np.concatenate((P.transpose(1, 0), Z), axis=1)
- L = np.concatenate((first, second), axis=0)
- Li = linalg.inv(L)
- return Li
- def _prepare_to_transform(self, out_h=256, out_w=192, grid_size=5):
- grid_X, grid_Y = np.meshgrid(np.linspace(-1, 1, out_w), np.linspace(-1, 1, out_h))
- grid_X = np.expand_dims(np.expand_dims(grid_X, axis=0), axis=3)
- grid_Y = np.expand_dims(np.expand_dims(grid_Y, axis=0), axis=3)
- axis_coords = np.linspace(-1, 1, grid_size)
- N = grid_size ** 2
- P_Y, P_X = np.meshgrid(axis_coords, axis_coords)
- P_X = np.reshape(P_X,(-1, 1))
- P_Y = np.reshape(P_Y,(-1, 1))
- P_X = np.expand_dims(np.expand_dims(np.expand_dims(P_X, axis=2), axis=3), axis=4).transpose(4, 1, 2, 3, 0)
- P_Y = np.expand_dims(np.expand_dims(np.expand_dims(P_Y, axis=2), axis=3), axis=4).transpose(4, 1, 2, 3, 0)
- return grid_X, grid_Y, N, P_X, P_Y
- def _expand_torch(self, X, shape):
- if len(X.shape) != len(shape):
- return X.flatten().reshape(shape)
- else:
- axis = [1 if src == dst else dst for src, dst in zip(X.shape, shape)]
- return np.tile(X, axis)
- def _apply_transformation(self, theta, points, N, P_X, P_Y):
- if len(theta.shape) == 2:
- theta = np.expand_dims(np.expand_dims(theta, axis=2), axis=3)
- batch_size = theta.shape[0]
- P_X_base = np.copy(P_X)
- P_Y_base = np.copy(P_Y)
- Li = self._compute_L_inverse(np.reshape(P_X, (N, -1)), np.reshape(P_Y, (N, -1)))
- Li = np.expand_dims(Li, axis=0)
- # split theta into point coordinates
- Q_X = np.squeeze(theta[:, :N, :, :], axis=3)
- Q_Y = np.squeeze(theta[:, N:, :, :], axis=3)
- Q_X += self._expand_torch(P_X_base, Q_X.shape)
- Q_Y += self._expand_torch(P_Y_base, Q_Y.shape)
- points_b = points.shape[0]
- points_h = points.shape[1]
- points_w = points.shape[2]
- P_X = self._expand_torch(P_X, (1, points_h, points_w, 1, N))
- P_Y = self._expand_torch(P_Y, (1, points_h, points_w, 1, N))
- W_X = self._expand_torch(Li[:,:N,:N], (batch_size, N, N)) @ Q_X
- W_Y = self._expand_torch(Li[:,:N,:N], (batch_size, N, N)) @ Q_Y
- W_X = np.expand_dims(np.expand_dims(W_X, axis=3), axis=4).transpose(0, 4, 2, 3, 1)
- W_X = np.repeat(W_X, points_h, axis=1)
- W_X = np.repeat(W_X, points_w, axis=2)
- W_Y = np.expand_dims(np.expand_dims(W_Y, axis=3), axis=4).transpose(0, 4, 2, 3, 1)
- W_Y = np.repeat(W_Y, points_h, axis=1)
- W_Y = np.repeat(W_Y, points_w, axis=2)
- A_X = self._expand_torch(Li[:, N:, :N], (batch_size, 3, N)) @ Q_X
- A_Y = self._expand_torch(Li[:, N:, :N], (batch_size, 3, N)) @ Q_Y
- A_X = np.expand_dims(np.expand_dims(A_X, axis=3), axis=4).transpose(0, 4, 2, 3, 1)
- A_X = np.repeat(A_X, points_h, axis=1)
- A_X = np.repeat(A_X, points_w, axis=2)
- A_Y = np.expand_dims(np.expand_dims(A_Y, axis=3), axis=4).transpose(0, 4, 2, 3, 1)
- A_Y = np.repeat(A_Y, points_h, axis=1)
- A_Y = np.repeat(A_Y, points_w, axis=2)
- points_X_for_summation = np.expand_dims(np.expand_dims(points[:, :, :, 0], axis=3), axis=4)
- points_X_for_summation = self._expand_torch(points_X_for_summation, points[:, :, :, 0].shape + (1, N))
- points_Y_for_summation = np.expand_dims(np.expand_dims(points[:, :, :, 1], axis=3), axis=4)
- points_Y_for_summation = self._expand_torch(points_Y_for_summation, points[:, :, :, 0].shape + (1, N))
- if points_b == 1:
- delta_X = points_X_for_summation - P_X
- delta_Y = points_Y_for_summation - P_Y
- else:
- delta_X = points_X_for_summation - self._expand_torch(P_X, points_X_for_summation.shape)
- delta_Y = points_Y_for_summation - self._expand_torch(P_Y, points_Y_for_summation.shape)
- dist_squared = np.power(delta_X, 2) + np.power(delta_Y, 2)
- dist_squared[dist_squared == 0] = 1
- U = np.multiply(dist_squared, np.log(dist_squared))
- points_X_batch = np.expand_dims(points[:,:,:,0], axis=3)
- points_Y_batch = np.expand_dims(points[:,:,:,1], axis=3)
- if points_b == 1:
- points_X_batch = self._expand_torch(points_X_batch, (batch_size, ) + points_X_batch.shape[1:])
- points_Y_batch = self._expand_torch(points_Y_batch, (batch_size, ) + points_Y_batch.shape[1:])
- points_X_prime = A_X[:,:,:,:,0]+ \
- np.multiply(A_X[:,:,:,:,1], points_X_batch) + \
- np.multiply(A_X[:,:,:,:,2], points_Y_batch) + \
- np.sum(np.multiply(W_X, self._expand_torch(U, W_X.shape)), 4)
- points_Y_prime = A_Y[:,:,:,:,0]+ \
- np.multiply(A_Y[:,:,:,:,1], points_X_batch) + \
- np.multiply(A_Y[:,:,:,:,2], points_Y_batch) + \
- np.sum(np.multiply(W_Y, self._expand_torch(U, W_Y.shape)), 4)
- return np.concatenate((points_X_prime, points_Y_prime), 3)
- def _generate_grid(self, theta):
- grid_X, grid_Y, N, P_X, P_Y = self._prepare_to_transform()
- warped_grid = self._apply_transformation(theta, np.concatenate((grid_X, grid_Y), axis=3), N, P_X, P_Y)
- return warped_grid
- def _bilinear_sampler(self, img, grid):
- x, y = grid[:,:,:,0], grid[:,:,:,1]
- H = img.shape[2]
- W = img.shape[3]
- max_y = H - 1
- max_x = W - 1
- # rescale x and y to [0, W-1/H-1]
- x = 0.5 * (x + 1.0) * (max_x - 1)
- y = 0.5 * (y + 1.0) * (max_y - 1)
- # grab 4 nearest corner points for each (x_i, y_i)
- x0 = np.floor(x).astype(int)
- x1 = x0 + 1
- y0 = np.floor(y).astype(int)
- y1 = y0 + 1
- # calculate deltas
- wa = (x1 - x) * (y1 - y)
- wb = (x1 - x) * (y - y0)
- wc = (x - x0) * (y1 - y)
- wd = (x - x0) * (y - y0)
- # clip to range [0, H-1/W-1] to not violate img boundaries
- x0 = np.clip(x0, 0, max_x)
- x1 = np.clip(x1, 0, max_x)
- y0 = np.clip(y0, 0, max_y)
- y1 = np.clip(y1, 0, max_y)
- # get pixel value at corner coords
- img = img.reshape(-1, H, W)
- Ia = img[:, y0, x0].swapaxes(0, 1)
- Ib = img[:, y1, x0].swapaxes(0, 1)
- Ic = img[:, y0, x1].swapaxes(0, 1)
- Id = img[:, y1, x1].swapaxes(0, 1)
- wa = np.expand_dims(wa, axis=0)
- wb = np.expand_dims(wb, axis=0)
- wc = np.expand_dims(wc, axis=0)
- wd = np.expand_dims(wd, axis=0)
- # compute output
- out = wa*Ia + wb*Ib + wc*Ic + wd*Id
- return out
- class CorrelationLayer(object):
- def __init__(self, params, blobs):
- super(CorrelationLayer, self).__init__()
- def getMemoryShapes(self, inputs):
- fetureAShape = inputs[0]
- b, _, h, w = fetureAShape
- return [[b, h * w, h, w]]
- def forward(self, inputs):
- feature_A, feature_B = inputs
- b, c, h, w = feature_A.shape
- feature_A = feature_A.transpose(0, 1, 3, 2)
- feature_A = np.reshape(feature_A, (b, c, h * w))
- feature_B = np.reshape(feature_B, (b, c, h * w))
- feature_B = feature_B.transpose(0, 2, 1)
- feature_mul = feature_B @ feature_A
- feature_mul= np.reshape(feature_mul, (b, h, w, h * w))
- feature_mul = feature_mul.transpose(0, 1, 3, 2)
- correlation_tensor = feature_mul.transpose(0, 2, 1, 3)
- correlation_tensor = np.ascontiguousarray(correlation_tensor)
- return [correlation_tensor]
- if __name__ == "__main__":
- if not os.path.isfile(args.gmm_model):
- raise OSError("GMM model not exist")
- if not os.path.isfile(args.tom_model):
- raise OSError("TOM model not exist")
- if not os.path.isfile(args.segmentation_model):
- raise OSError("Segmentation model not exist")
- if not os.path.isfile(findFile(args.openpose_proto)):
- raise OSError("OpenPose proto not exist")
- if not os.path.isfile(findFile(args.openpose_model)):
- raise OSError("OpenPose model not exist")
- person_img = cv.imread(args.input_image)
- ratio = 256 / 192
- inp_h, inp_w, _ = person_img.shape
- current_ratio = inp_h / inp_w
- if current_ratio > ratio:
- center_h = inp_h // 2
- out_h = inp_w * ratio
- start = int(center_h - out_h // 2)
- end = int(center_h + out_h // 2)
- person_img = person_img[start:end, ...]
- else:
- center_w = inp_w // 2
- out_w = inp_h / ratio
- start = int(center_w - out_w // 2)
- end = int(center_w + out_w // 2)
- person_img = person_img[:, start:end, :]
- cloth_img = cv.imread(args.input_cloth)
- pose = get_pose_map(person_img, findFile(args.openpose_proto),
- findFile(args.openpose_model), args.backend, args.target)
- segm_image = parse_human(person_img, args.segmentation_model)
- segm_image = cv.resize(segm_image, (192, 256), cv.INTER_LINEAR)
- cv.dnn_registerLayer('Correlation', CorrelationLayer)
- model = CpVton(args.gmm_model, args.tom_model, args.backend, args.target)
- agnostic = model.prepare_agnostic(segm_image, person_img, pose)
- warped_cloth = model.get_warped_cloth(cloth_img, agnostic)
- output = model.get_tryon(agnostic, warped_cloth)
- cv.dnn_unregisterLayer('Correlation')
- winName = 'Virtual Try-On'
- cv.namedWindow(winName, cv.WINDOW_AUTOSIZE)
- cv.imshow(winName, output)
- cv.waitKey()
|