123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115 |
- #include <iostream>
- #include "opencv2/opencv_modules.hpp"
- #ifdef HAVE_OPENCV_XFEATURES2D
- #include <opencv2/core.hpp>
- #include <opencv2/imgproc.hpp>
- #include <opencv2/highgui.hpp>
- #include <opencv2/features2d.hpp>
- #include <opencv2/xfeatures2d.hpp>
- #include <opencv2/imgcodecs.hpp>
- #include <vector>
- // If you find this code useful, please add a reference to the following paper in your work:
- // Gil Levi and Tal Hassner, "LATCH: Learned Arrangements of Three Patch Codes", arXiv preprint arXiv:1501.03719, 15 Jan. 2015
- using namespace std;
- using namespace cv;
- const float inlier_threshold = 2.5f; // Distance threshold to identify inliers
- const float nn_match_ratio = 0.8f; // Nearest neighbor matching ratio
- int main(int argc, char* argv[])
- {
- CommandLineParser parser(argc, argv,
- "{@img1 | graf1.png | input image 1}"
- "{@img2 | graf3.png | input image 2}"
- "{@homography | H1to3p.xml | homography matrix}");
- Mat img1 = imread( samples::findFile( parser.get<String>("@img1") ), IMREAD_GRAYSCALE);
- Mat img2 = imread( samples::findFile( parser.get<String>("@img2") ), IMREAD_GRAYSCALE);
- Mat homography;
- FileStorage fs( samples::findFile( parser.get<String>("@homography") ), FileStorage::READ);
- fs.getFirstTopLevelNode() >> homography;
- vector<KeyPoint> kpts1, kpts2;
- Mat desc1, desc2;
- Ptr<cv::ORB> orb_detector = cv::ORB::create(10000);
- Ptr<xfeatures2d::LATCH> latch = xfeatures2d::LATCH::create();
- orb_detector->detect(img1, kpts1);
- latch->compute(img1, kpts1, desc1);
- orb_detector->detect(img2, kpts2);
- latch->compute(img2, kpts2, desc2);
- BFMatcher matcher(NORM_HAMMING);
- vector< vector<DMatch> > nn_matches;
- matcher.knnMatch(desc1, desc2, nn_matches, 2);
- vector<KeyPoint> matched1, matched2, inliers1, inliers2;
- vector<DMatch> good_matches;
- for (size_t i = 0; i < nn_matches.size(); i++) {
- DMatch first = nn_matches[i][0];
- float dist1 = nn_matches[i][0].distance;
- float dist2 = nn_matches[i][1].distance;
- if (dist1 < nn_match_ratio * dist2) {
- matched1.push_back(kpts1[first.queryIdx]);
- matched2.push_back(kpts2[first.trainIdx]);
- }
- }
- for (unsigned i = 0; i < matched1.size(); i++) {
- Mat col = Mat::ones(3, 1, CV_64F);
- col.at<double>(0) = matched1[i].pt.x;
- col.at<double>(1) = matched1[i].pt.y;
- col = homography * col;
- col /= col.at<double>(2);
- double dist = sqrt(pow(col.at<double>(0) - matched2[i].pt.x, 2) +
- pow(col.at<double>(1) - matched2[i].pt.y, 2));
- if (dist < inlier_threshold) {
- int new_i = static_cast<int>(inliers1.size());
- inliers1.push_back(matched1[i]);
- inliers2.push_back(matched2[i]);
- good_matches.push_back(DMatch(new_i, new_i, 0));
- }
- }
- Mat res;
- drawMatches(img1, inliers1, img2, inliers2, good_matches, res);
- imwrite("latch_result.png", res);
- double inlier_ratio = inliers1.size() * 1.0 / matched1.size();
- cout << "LATCH Matching Results" << endl;
- cout << "*******************************" << endl;
- cout << "# Keypoints 1: \t" << kpts1.size() << endl;
- cout << "# Keypoints 2: \t" << kpts2.size() << endl;
- cout << "# Matches: \t" << matched1.size() << endl;
- cout << "# Inliers: \t" << inliers1.size() << endl;
- cout << "# Inliers Ratio: \t" << inlier_ratio << endl;
- cout << endl;
- imshow("result", res);
- waitKey();
- return 0;
- }
- #else
- int main()
- {
- std::cerr << "OpenCV was built without xfeatures2d module" << std::endl;
- return 0;
- }
- #endif
|