123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458 |
- /* This is sample from the OpenCV book. The copyright notice is below */
- /* *************** License:**************************
- Oct. 3, 2008
- Right to use this code in any way you want without warranty, support or any guarantee of it working.
- BOOK: It would be nice if you cited it:
- Learning OpenCV: Computer Vision with the OpenCV Library
- by Gary Bradski and Adrian Kaehler
- Published by O'Reilly Media, October 3, 2008
- AVAILABLE AT:
- http://www.amazon.com/Learning-OpenCV-Computer-Vision-Library/dp/0596516134
- Or: http://oreilly.com/catalog/9780596516130/
- ISBN-10: 0596516134 or: ISBN-13: 978-0596516130
- OPENCV WEBSITES:
- Homepage: http://opencv.org
- Online docs: http://docs.opencv.org
- GitHub: https://github.com/opencv/opencv/
- ************************************************** */
- #include "opencv2/calib3d.hpp"
- #include "opencv2/imgcodecs.hpp"
- #include "opencv2/highgui.hpp"
- #include "opencv2/imgproc.hpp"
- #include "opencv2/objdetect/charuco_detector.hpp"
- #include <vector>
- #include <string>
- #include <algorithm>
- #include <iostream>
- #include <iterator>
- #include <stdio.h>
- #include <stdlib.h>
- #include <ctype.h>
- using namespace cv;
- using namespace std;
- static int print_help(char** argv)
- {
- cout <<
- " Given a list of chessboard or ChArUco images, the number of corners (nx, ny)\n"
- " on the chessboards and the number of squares (nx, ny) on ChArUco,\n"
- " and a flag: useCalibrated for \n"
- " calibrated (0) or\n"
- " uncalibrated \n"
- " (1: use stereoCalibrate(), 2: compute fundamental\n"
- " matrix separately) stereo. \n"
- " Calibrate the cameras and display the\n"
- " rectified results along with the computed disparity images. \n" << endl;
- cout << "Usage:\n " << argv[0] << " -w=<board_width default=9> -h=<board_height default=6>"
- <<" -t=<pattern type: chessboard or charucoboard default=chessboard> -s=<square_size default=1.0> -ms=<marker size default=0.5>"
- <<" -ad=<predefined aruco dictionary name default=DICT_4X4_50> -adf=<aruco dictionary file default=None>"
- <<" <image list XML/YML file default=stereo_calib.xml>\n" << endl;
- cout << "Available Aruco dictionaries: DICT_4X4_50, DICT_4X4_100, DICT_4X4_250, "
- << "DICT_4X4_1000, DICT_5X5_50, DICT_5X5_100, DICT_5X5_250, DICT_5X5_1000, "
- << "DICT_6X6_50, DICT_6X6_100, DICT_6X6_250, DICT_6X6_1000, DICT_7X7_50, "
- << "DICT_7X7_100, DICT_7X7_250, DICT_7X7_1000, DICT_ARUCO_ORIGINAL, "
- << "DICT_APRILTAG_16h5, DICT_APRILTAG_25h9, DICT_APRILTAG_36h10, DICT_APRILTAG_36h11\n";
- return 0;
- }
- static void
- StereoCalib(const vector<string>& imagelist, Size inputBoardSize, string type, float squareSize, float markerSize, cv::aruco::PredefinedDictionaryType arucoDict, string arucoDictFile, bool displayCorners = false, bool useCalibrated=true, bool showRectified=true)
- {
- if( imagelist.size() % 2 != 0 )
- {
- cout << "Error: the image list contains odd (non-even) number of elements\n";
- return;
- }
- const int maxScale = 2;
- // ARRAY AND VECTOR STORAGE:
- vector<vector<Point2f> > imagePoints[2];
- vector<vector<Point3f> > objectPoints;
- Size imageSize;
- int i, j, k, nimages = (int)imagelist.size()/2;
- imagePoints[0].resize(nimages);
- imagePoints[1].resize(nimages);
- vector<string> goodImageList;
- Size boardSizeInnerCorners, boardSizeUnits;
- if (type == "chessboard") {
- //chess board pattern boardSize is given in inner corners
- boardSizeInnerCorners = inputBoardSize;
- boardSizeUnits.height = inputBoardSize.height+1;
- boardSizeUnits.width = inputBoardSize.width+1;
- }
- else if (type == "charucoboard") {
- //ChArUco board pattern boardSize is given in squares units
- boardSizeUnits = inputBoardSize;
- boardSizeInnerCorners.width = inputBoardSize.width - 1;
- boardSizeInnerCorners.height = inputBoardSize.height - 1;
- }
- else {
- std::cout << "unknown pattern type " << type << "\n";
- return;
- }
- cv::aruco::Dictionary dictionary;
- if (arucoDictFile == "None") {
- dictionary = cv::aruco::getPredefinedDictionary(arucoDict);
- }
- else {
- cv::FileStorage dict_file(arucoDictFile, cv::FileStorage::Mode::READ);
- cv::FileNode fn(dict_file.root());
- dictionary.readDictionary(fn);
- }
- cv::aruco::CharucoBoard ch_board(boardSizeUnits, squareSize, markerSize, dictionary);
- cv::aruco::CharucoDetector ch_detector(ch_board);
- std::vector<int> markerIds;
- for( i = j = 0; i < nimages; i++ )
- {
- for( k = 0; k < 2; k++ )
- {
- const string& filename = imagelist[i*2+k];
- Mat img = imread(filename, IMREAD_GRAYSCALE);
- if(img.empty())
- break;
- if( imageSize == Size() )
- imageSize = img.size();
- else if( img.size() != imageSize )
- {
- cout << "The image " << filename << " has the size different from the first image size. Skipping the pair\n";
- break;
- }
- bool found = false;
- vector<Point2f>& corners = imagePoints[k][j];
- for( int scale = 1; scale <= maxScale; scale++ )
- {
- Mat timg;
- if( scale == 1 )
- timg = img;
- else
- resize(img, timg, Size(), scale, scale, INTER_LINEAR_EXACT);
- if (type == "chessboard") {
- found = findChessboardCorners(timg, boardSizeInnerCorners, corners,
- CALIB_CB_ADAPTIVE_THRESH | CALIB_CB_NORMALIZE_IMAGE);
- }
- else if (type == "charucoboard") {
- ch_detector.detectBoard(timg, corners, markerIds);
- found = corners.size() == (size_t) (boardSizeInnerCorners.height*boardSizeInnerCorners.width);
- }
- else {
- cout << "Error: unknown pattern " << type << "\n";
- return;
- }
- if( found )
- {
- if( scale > 1 )
- {
- Mat cornersMat(corners);
- cornersMat *= 1./scale;
- }
- break;
- }
- }
- if( displayCorners )
- {
- cout << filename << endl;
- Mat cimg, cimg1;
- cvtColor(img, cimg, COLOR_GRAY2BGR);
- drawChessboardCorners(cimg, boardSizeInnerCorners, corners, found);
- double sf = 640./MAX(img.rows, img.cols);
- resize(cimg, cimg1, Size(), sf, sf, INTER_LINEAR_EXACT);
- imshow("corners", cimg1);
- char c = (char)waitKey(500);
- if( c == 27 || c == 'q' || c == 'Q' ) //Allow ESC to quit
- exit(-1);
- }
- else
- putchar('.');
- if( !found )
- break;
- if (type == "chessboard") {
- cornerSubPix(img, corners, Size(11, 11), Size(-1, -1),
- TermCriteria(TermCriteria::COUNT + TermCriteria::EPS,
- 30, 0.01));
- }
- }
- if( k == 2 )
- {
- goodImageList.push_back(imagelist[i*2]);
- goodImageList.push_back(imagelist[i*2+1]);
- j++;
- }
- }
- cout << j << " pairs have been successfully detected.\n";
- nimages = j;
- if( nimages < 2 )
- {
- cout << "Error: too little pairs to run the calibration\n";
- return;
- }
- imagePoints[0].resize(nimages);
- imagePoints[1].resize(nimages);
- objectPoints.resize(nimages);
- for( i = 0; i < nimages; i++ )
- {
- for( j = 0; j < boardSizeInnerCorners.height; j++ )
- for( k = 0; k < boardSizeInnerCorners.width; k++ )
- objectPoints[i].push_back(Point3f(k*squareSize, j*squareSize, 0));
- }
- cout << "Running stereo calibration ...\n";
- Mat cameraMatrix[2], distCoeffs[2];
- cameraMatrix[0] = initCameraMatrix2D(objectPoints,imagePoints[0],imageSize,0);
- cameraMatrix[1] = initCameraMatrix2D(objectPoints,imagePoints[1],imageSize,0);
- Mat R, T, E, F;
- double rms = stereoCalibrate(objectPoints, imagePoints[0], imagePoints[1],
- cameraMatrix[0], distCoeffs[0],
- cameraMatrix[1], distCoeffs[1],
- imageSize, R, T, E, F,
- CALIB_FIX_ASPECT_RATIO +
- CALIB_ZERO_TANGENT_DIST +
- CALIB_USE_INTRINSIC_GUESS +
- CALIB_SAME_FOCAL_LENGTH +
- CALIB_RATIONAL_MODEL +
- CALIB_FIX_K3 + CALIB_FIX_K4 + CALIB_FIX_K5,
- TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 100, 1e-5) );
- cout << "done with RMS error=" << rms << endl;
- // CALIBRATION QUALITY CHECK
- // because the output fundamental matrix implicitly
- // includes all the output information,
- // we can check the quality of calibration using the
- // epipolar geometry constraint: m2^t*F*m1=0
- double err = 0;
- int npoints = 0;
- vector<Vec3f> lines[2];
- for( i = 0; i < nimages; i++ )
- {
- int npt = (int)imagePoints[0][i].size();
- Mat imgpt[2];
- for( k = 0; k < 2; k++ )
- {
- imgpt[k] = Mat(imagePoints[k][i]);
- undistortPoints(imgpt[k], imgpt[k], cameraMatrix[k], distCoeffs[k], Mat(), cameraMatrix[k]);
- computeCorrespondEpilines(imgpt[k], k+1, F, lines[k]);
- }
- for( j = 0; j < npt; j++ )
- {
- double errij = fabs(imagePoints[0][i][j].x*lines[1][j][0] +
- imagePoints[0][i][j].y*lines[1][j][1] + lines[1][j][2]) +
- fabs(imagePoints[1][i][j].x*lines[0][j][0] +
- imagePoints[1][i][j].y*lines[0][j][1] + lines[0][j][2]);
- err += errij;
- }
- npoints += npt;
- }
- cout << "average epipolar err = " << err/npoints << endl;
- // save intrinsic parameters
- FileStorage fs("intrinsics.yml", FileStorage::WRITE);
- if( fs.isOpened() )
- {
- fs << "M1" << cameraMatrix[0] << "D1" << distCoeffs[0] <<
- "M2" << cameraMatrix[1] << "D2" << distCoeffs[1];
- fs.release();
- }
- else
- cout << "Error: can not save the intrinsic parameters\n";
- Mat R1, R2, P1, P2, Q;
- Rect validRoi[2];
- stereoRectify(cameraMatrix[0], distCoeffs[0],
- cameraMatrix[1], distCoeffs[1],
- imageSize, R, T, R1, R2, P1, P2, Q,
- CALIB_ZERO_DISPARITY, 1, imageSize, &validRoi[0], &validRoi[1]);
- fs.open("extrinsics.yml", FileStorage::WRITE);
- if( fs.isOpened() )
- {
- fs << "R" << R << "T" << T << "R1" << R1 << "R2" << R2 << "P1" << P1 << "P2" << P2 << "Q" << Q;
- fs.release();
- }
- else
- cout << "Error: can not save the extrinsic parameters\n";
- // OpenCV can handle left-right
- // or up-down camera arrangements
- bool isVerticalStereo = fabs(P2.at<double>(1, 3)) > fabs(P2.at<double>(0, 3));
- // COMPUTE AND DISPLAY RECTIFICATION
- if( !showRectified )
- return;
- Mat rmap[2][2];
- // IF BY CALIBRATED (BOUGUET'S METHOD)
- if( useCalibrated )
- {
- // we already computed everything
- }
- // OR ELSE HARTLEY'S METHOD
- else
- // use intrinsic parameters of each camera, but
- // compute the rectification transformation directly
- // from the fundamental matrix
- {
- vector<Point2f> allimgpt[2];
- for( k = 0; k < 2; k++ )
- {
- for( i = 0; i < nimages; i++ )
- std::copy(imagePoints[k][i].begin(), imagePoints[k][i].end(), back_inserter(allimgpt[k]));
- }
- F = findFundamentalMat(Mat(allimgpt[0]), Mat(allimgpt[1]), FM_8POINT, 0, 0);
- Mat H1, H2;
- stereoRectifyUncalibrated(Mat(allimgpt[0]), Mat(allimgpt[1]), F, imageSize, H1, H2, 3);
- R1 = cameraMatrix[0].inv()*H1*cameraMatrix[0];
- R2 = cameraMatrix[1].inv()*H2*cameraMatrix[1];
- P1 = cameraMatrix[0];
- P2 = cameraMatrix[1];
- }
- //Precompute maps for cv::remap()
- initUndistortRectifyMap(cameraMatrix[0], distCoeffs[0], R1, P1, imageSize, CV_16SC2, rmap[0][0], rmap[0][1]);
- initUndistortRectifyMap(cameraMatrix[1], distCoeffs[1], R2, P2, imageSize, CV_16SC2, rmap[1][0], rmap[1][1]);
- Mat canvas;
- double sf;
- int w, h;
- if( !isVerticalStereo )
- {
- sf = 600./MAX(imageSize.width, imageSize.height);
- w = cvRound(imageSize.width*sf);
- h = cvRound(imageSize.height*sf);
- canvas.create(h, w*2, CV_8UC3);
- }
- else
- {
- sf = 300./MAX(imageSize.width, imageSize.height);
- w = cvRound(imageSize.width*sf);
- h = cvRound(imageSize.height*sf);
- canvas.create(h*2, w, CV_8UC3);
- }
- for( i = 0; i < nimages; i++ )
- {
- for( k = 0; k < 2; k++ )
- {
- Mat img = imread(goodImageList[i*2+k], IMREAD_GRAYSCALE), rimg, cimg;
- remap(img, rimg, rmap[k][0], rmap[k][1], INTER_LINEAR);
- cvtColor(rimg, cimg, COLOR_GRAY2BGR);
- Mat canvasPart = !isVerticalStereo ? canvas(Rect(w*k, 0, w, h)) : canvas(Rect(0, h*k, w, h));
- resize(cimg, canvasPart, canvasPart.size(), 0, 0, INTER_AREA);
- if( useCalibrated )
- {
- Rect vroi(cvRound(validRoi[k].x*sf), cvRound(validRoi[k].y*sf),
- cvRound(validRoi[k].width*sf), cvRound(validRoi[k].height*sf));
- rectangle(canvasPart, vroi, Scalar(0,0,255), 3, 8);
- }
- }
- if( !isVerticalStereo )
- for( j = 0; j < canvas.rows; j += 16 )
- line(canvas, Point(0, j), Point(canvas.cols, j), Scalar(0, 255, 0), 1, 8);
- else
- for( j = 0; j < canvas.cols; j += 16 )
- line(canvas, Point(j, 0), Point(j, canvas.rows), Scalar(0, 255, 0), 1, 8);
- imshow("rectified", canvas);
- char c = (char)waitKey();
- if( c == 27 || c == 'q' || c == 'Q' )
- break;
- }
- }
- static bool readStringList( const string& filename, vector<string>& l )
- {
- l.resize(0);
- FileStorage fs(filename, FileStorage::READ);
- if( !fs.isOpened() )
- return false;
- FileNode n = fs.getFirstTopLevelNode();
- if( n.type() != FileNode::SEQ )
- return false;
- FileNodeIterator it = n.begin(), it_end = n.end();
- for( ; it != it_end; ++it )
- l.push_back((string)*it);
- return true;
- }
- int main(int argc, char** argv)
- {
- Size inputBoardSize;
- string imagelistfn;
- bool showRectified;
- cv::CommandLineParser parser(argc, argv, "{w|9|}{h|6|}{t|chessboard|}{s|1.0|}{ms|0.5|}{ad|DICT_4X4_50|}{adf|None|}{nr||}{help||}{@input|stereo_calib.xml|}");
- if (parser.has("help"))
- return print_help(argv);
- showRectified = !parser.has("nr");
- imagelistfn = samples::findFile(parser.get<string>("@input"));
- inputBoardSize.width = parser.get<int>("w");
- inputBoardSize.height = parser.get<int>("h");
- string type = parser.get<string>("t");
- float squareSize = parser.get<float>("s");
- float markerSize = parser.get<float>("ms");
- string arucoDictName = parser.get<string>("ad");
- string arucoDictFile = parser.get<string>("adf");
- cv::aruco::PredefinedDictionaryType arucoDict;
- if (arucoDictName == "DICT_4X4_50") { arucoDict = cv::aruco::DICT_4X4_50; }
- else if (arucoDictName == "DICT_4X4_100") { arucoDict = cv::aruco::DICT_4X4_100; }
- else if (arucoDictName == "DICT_4X4_250") { arucoDict = cv::aruco::DICT_4X4_250; }
- else if (arucoDictName == "DICT_4X4_1000") { arucoDict = cv::aruco::DICT_4X4_1000; }
- else if (arucoDictName == "DICT_5X5_50") { arucoDict = cv::aruco::DICT_5X5_50; }
- else if (arucoDictName == "DICT_5X5_100") { arucoDict = cv::aruco::DICT_5X5_100; }
- else if (arucoDictName == "DICT_5X5_250") { arucoDict = cv::aruco::DICT_5X5_250; }
- else if (arucoDictName == "DICT_5X5_1000") { arucoDict = cv::aruco::DICT_5X5_1000; }
- else if (arucoDictName == "DICT_6X6_50") { arucoDict = cv::aruco::DICT_6X6_50; }
- else if (arucoDictName == "DICT_6X6_100") { arucoDict = cv::aruco::DICT_6X6_100; }
- else if (arucoDictName == "DICT_6X6_250") { arucoDict = cv::aruco::DICT_6X6_250; }
- else if (arucoDictName == "DICT_6X6_1000") { arucoDict = cv::aruco::DICT_6X6_1000; }
- else if (arucoDictName == "DICT_7X7_50") { arucoDict = cv::aruco::DICT_7X7_50; }
- else if (arucoDictName == "DICT_7X7_100") { arucoDict = cv::aruco::DICT_7X7_100; }
- else if (arucoDictName == "DICT_7X7_250") { arucoDict = cv::aruco::DICT_7X7_250; }
- else if (arucoDictName == "DICT_7X7_1000") { arucoDict = cv::aruco::DICT_7X7_1000; }
- else if (arucoDictName == "DICT_ARUCO_ORIGINAL") { arucoDict = cv::aruco::DICT_ARUCO_ORIGINAL; }
- else if (arucoDictName == "DICT_APRILTAG_16h5") { arucoDict = cv::aruco::DICT_APRILTAG_16h5; }
- else if (arucoDictName == "DICT_APRILTAG_25h9") { arucoDict = cv::aruco::DICT_APRILTAG_25h9; }
- else if (arucoDictName == "DICT_APRILTAG_36h10") { arucoDict = cv::aruco::DICT_APRILTAG_36h10; }
- else if (arucoDictName == "DICT_APRILTAG_36h11") { arucoDict = cv::aruco::DICT_APRILTAG_36h11; }
- else {
- cout << "incorrect name of aruco dictionary \n";
- return 1;
- }
- if (!parser.check())
- {
- parser.printErrors();
- return 1;
- }
- vector<string> imagelist;
- bool ok = readStringList(imagelistfn, imagelist);
- if(!ok || imagelist.empty())
- {
- cout << "can not open " << imagelistfn << " or the string list is empty" << endl;
- return print_help(argv);
- }
- StereoCalib(imagelist, inputBoardSize, type, squareSize, markerSize, arucoDict, arucoDictFile, false, true, showRectified);
- return 0;
- }
|