123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112 |
- #include "opencv2/video/tracking.hpp"
- #include "opencv2/highgui.hpp"
- #include "opencv2/core/cvdef.h"
- #include <stdio.h>
- using namespace cv;
- static inline Point calcPoint(Point2f center, double R, double angle)
- {
- return center + Point2f((float)cos(angle), (float)-sin(angle))*(float)R;
- }
- static void help()
- {
- printf( "\nExample of c calls to OpenCV's Kalman filter.\n"
- " Tracking of rotating point.\n"
- " Point moves in a circle and is characterized by a 1D state.\n"
- " state_k+1 = state_k + speed + process_noise N(0, 1e-5)\n"
- " The speed is constant.\n"
- " Both state and measurements vectors are 1D (a point angle),\n"
- " Measurement is the real state + gaussian noise N(0, 1e-1).\n"
- " The real and the measured points are connected with red line segment,\n"
- " the real and the estimated points are connected with yellow line segment,\n"
- " the real and the corrected estimated points are connected with green line segment.\n"
- " (if Kalman filter works correctly,\n"
- " the yellow segment should be shorter than the red one and\n"
- " the green segment should be shorter than the yellow one)."
- "\n"
- " Pressing any key (except ESC) will reset the tracking.\n"
- " Pressing ESC will stop the program.\n"
- );
- }
- int main(int, char**)
- {
- help();
- Mat img(500, 500, CV_8UC3);
- KalmanFilter KF(2, 1, 0);
- Mat state(2, 1, CV_32F); /* (phi, delta_phi) */
- Mat processNoise(2, 1, CV_32F);
- Mat measurement = Mat::zeros(1, 1, CV_32F);
- char code = (char)-1;
- for(;;)
- {
- img = Scalar::all(0);
- state.at<float>(0) = 0.0f;
- state.at<float>(1) = 2.f * (float)CV_PI / 6;
- KF.transitionMatrix = (Mat_<float>(2, 2) << 1, 1, 0, 1);
- setIdentity(KF.measurementMatrix);
- setIdentity(KF.processNoiseCov, Scalar::all(1e-5));
- setIdentity(KF.measurementNoiseCov, Scalar::all(1e-1));
- setIdentity(KF.errorCovPost, Scalar::all(1));
- randn(KF.statePost, Scalar::all(0), Scalar::all(0.1));
- for(;;)
- {
- Point2f center(img.cols*0.5f, img.rows*0.5f);
- float R = img.cols/3.f;
- double stateAngle = state.at<float>(0);
- Point statePt = calcPoint(center, R, stateAngle);
- Mat prediction = KF.predict();
- double predictAngle = prediction.at<float>(0);
- Point predictPt = calcPoint(center, R, predictAngle);
- // generate measurement
- randn( measurement, Scalar::all(0), Scalar::all(KF.measurementNoiseCov.at<float>(0)));
- measurement += KF.measurementMatrix*state;
- double measAngle = measurement.at<float>(0);
- Point measPt = calcPoint(center, R, measAngle);
- // correct the state estimates based on measurements
- // updates statePost & errorCovPost
- KF.correct(measurement);
- double improvedAngle = KF.statePost.at<float>(0);
- Point improvedPt = calcPoint(center, R, improvedAngle);
- // plot points
- img = img * 0.2;
- drawMarker(img, measPt, Scalar(0, 0, 255), cv::MARKER_SQUARE, 5, 2);
- drawMarker(img, predictPt, Scalar(0, 255, 255), cv::MARKER_SQUARE, 5, 2);
- drawMarker(img, improvedPt, Scalar(0, 255, 0), cv::MARKER_SQUARE, 5, 2);
- drawMarker(img, statePt, Scalar(255, 255, 255), cv::MARKER_STAR, 10, 1);
- // forecast one step
- Mat test = Mat(KF.transitionMatrix*KF.statePost);
- drawMarker(img, calcPoint(center, R, Mat(KF.transitionMatrix*KF.statePost).at<float>(0)),
- Scalar(255, 255, 0), cv::MARKER_SQUARE, 12, 1);
- line( img, statePt, measPt, Scalar(0,0,255), 1, LINE_AA, 0 );
- line( img, statePt, predictPt, Scalar(0,255,255), 1, LINE_AA, 0 );
- line( img, statePt, improvedPt, Scalar(0,255,0), 1, LINE_AA, 0 );
- randn( processNoise, Scalar(0), Scalar::all(sqrt(KF.processNoiseCov.at<float>(0, 0))));
- state = KF.transitionMatrix*state + processNoise;
- imshow( "Kalman", img );
- code = (char)waitKey(1000);
- if( code > 0 )
- break;
- }
- if( code == 27 || code == 'q' || code == 'Q' )
- break;
- }
- return 0;
- }
|