123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127 |
- #!/usr/bin/env python
- from __future__ import print_function
- import numpy as np
- import cv2 as cv
- import os
- from tests_common import NewOpenCVTests
- def load_exposure_seq(path):
- images = []
- times = []
- with open(os.path.join(path, 'list.txt'), 'r') as list_file:
- for line in list_file.readlines():
- name, time = line.split()
- images.append(cv.imread(os.path.join(path, name)))
- times.append(1. / float(time))
- return images, times
- class UMat(NewOpenCVTests):
- def test_umat_construct(self):
- data = np.random.random([512, 512])
- # UMat constructors
- data_um = cv.UMat(data) # from ndarray
- data_sub_um = cv.UMat(data_um, (128, 256), (128, 256)) # from UMat
- data_dst_um = cv.UMat(128, 128, cv.CV_64F) # from size/type
- # test continuous and submatrix flags
- assert data_um.isContinuous() and not data_um.isSubmatrix()
- assert not data_sub_um.isContinuous() and data_sub_um.isSubmatrix()
- # test operation on submatrix
- cv.multiply(data_sub_um, 2., dst=data_dst_um)
- assert np.allclose(2. * data[128:256, 128:256], data_dst_um.get())
- def test_umat_handle(self):
- a_um = cv.UMat(256, 256, cv.CV_32F)
- _ctx_handle = cv.UMat.context() # obtain context handle
- _queue_handle = cv.UMat.queue() # obtain queue handle
- _a_handle = a_um.handle(cv.ACCESS_READ) # obtain buffer handle
- _offset = a_um.offset # obtain buffer offset
- def test_umat_matching(self):
- img1 = self.get_sample("samples/data/right01.jpg")
- img2 = self.get_sample("samples/data/right02.jpg")
- orb = cv.ORB_create()
- img1, img2 = cv.UMat(img1), cv.UMat(img2)
- ps1, descs_umat1 = orb.detectAndCompute(img1, None)
- ps2, descs_umat2 = orb.detectAndCompute(img2, None)
- self.assertIsInstance(descs_umat1, cv.UMat)
- self.assertIsInstance(descs_umat2, cv.UMat)
- self.assertGreater(len(ps1), 0)
- self.assertGreater(len(ps2), 0)
- bf = cv.BFMatcher(cv.NORM_HAMMING, crossCheck=True)
- res_umats = bf.match(descs_umat1, descs_umat2)
- res = bf.match(descs_umat1.get(), descs_umat2.get())
- self.assertGreater(len(res), 0)
- self.assertEqual(len(res_umats), len(res))
- def test_umat_optical_flow(self):
- img1 = self.get_sample("samples/data/right01.jpg", cv.IMREAD_GRAYSCALE)
- img2 = self.get_sample("samples/data/right02.jpg", cv.IMREAD_GRAYSCALE)
- # Note, that if you want to see performance boost by OCL implementation - you need enough data
- # For example you can increase maxCorners param to 10000 and increase img1 and img2 in such way:
- # img = np.hstack([np.vstack([img] * 6)] * 6)
- feature_params = dict(maxCorners=239,
- qualityLevel=0.3,
- minDistance=7,
- blockSize=7)
- p0 = cv.goodFeaturesToTrack(img1, mask=None, **feature_params)
- p0_umat = cv.goodFeaturesToTrack(cv.UMat(img1), mask=None, **feature_params)
- self.assertEqual(p0_umat.get().shape, p0.shape)
- p0 = np.array(sorted(p0, key=lambda p: tuple(p[0])))
- p0_umat = cv.UMat(np.array(sorted(p0_umat.get(), key=lambda p: tuple(p[0]))))
- self.assertTrue(np.allclose(p0_umat.get(), p0))
- _p1_mask_err = cv.calcOpticalFlowPyrLK(img1, img2, p0, None)
- _p1_mask_err_umat0 = list(map(lambda umat: umat.get(), cv.calcOpticalFlowPyrLK(img1, img2, p0_umat, None)))
- _p1_mask_err_umat1 = list(map(lambda umat: umat.get(), cv.calcOpticalFlowPyrLK(cv.UMat(img1), img2, p0_umat, None)))
- _p1_mask_err_umat2 = list(map(lambda umat: umat.get(), cv.calcOpticalFlowPyrLK(img1, cv.UMat(img2), p0_umat, None)))
- for _p1_mask_err_umat in [_p1_mask_err_umat0, _p1_mask_err_umat1, _p1_mask_err_umat2]:
- for data, data_umat in zip(_p1_mask_err, _p1_mask_err_umat):
- self.assertEqual(data.shape, data_umat.shape)
- self.assertEqual(data.dtype, data_umat.dtype)
- for _p1_mask_err_umat in [_p1_mask_err_umat1, _p1_mask_err_umat2]:
- for data_umat0, data_umat in zip(_p1_mask_err_umat0[:2], _p1_mask_err_umat[:2]):
- self.assertTrue(np.allclose(data_umat0, data_umat))
- def test_umat_merge_mertens(self):
- if self.extraTestDataPath is None:
- self.fail('Test data is not available')
- test_data_path = os.path.join(self.extraTestDataPath, 'cv', 'hdr')
- images, _ = load_exposure_seq(os.path.join(test_data_path, 'exposures'))
- # As we want to test mat vs. umat here, we temporarily set only one worker-thread to achieve
- # deterministic summations inside mertens' parallelized process.
- num_threads = cv.getNumThreads()
- cv.setNumThreads(1)
- merge = cv.createMergeMertens()
- mat_result = merge.process(images)
- umat_images = [cv.UMat(img) for img in images]
- umat_result = merge.process(umat_images)
- cv.setNumThreads(num_threads)
- self.assertTrue(np.allclose(umat_result.get(), mat_result))
- if __name__ == '__main__':
- NewOpenCVTests.bootstrap()
|