1234567891011121314151617181920212223242526272829303132333435363738394041424344454647 |
- #!/usr/bin/env python
- '''
- Texture flow direction estimation.
- Sample shows how cv.cornerEigenValsAndVecs function can be used
- to estimate image texture flow direction.
- '''
- # Python 2/3 compatibility
- from __future__ import print_function
- import numpy as np
- import cv2 as cv
- import sys
- from tests_common import NewOpenCVTests
- class texture_flow_test(NewOpenCVTests):
- def test_texture_flow(self):
- img = self.get_sample('samples/data/chessboard.png')
- gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
- h, w = img.shape[:2]
- eigen = cv.cornerEigenValsAndVecs(gray, 5, 3)
- eigen = eigen.reshape(h, w, 3, 2) # [[e1, e2], v1, v2]
- flow = eigen[:,:,2]
- d = 300
- eps = d / 30
- points = np.dstack( np.mgrid[d/2:w:d, d/2:h:d] ).reshape(-1, 2)
- textureVectors = []
- for x, y in np.int32(points):
- textureVectors.append(np.int32(flow[y, x]*d))
- for i in range(len(textureVectors)):
- self.assertTrue(cv.norm(textureVectors[i], cv.NORM_L2) < eps
- or abs(cv.norm(textureVectors[i], cv.NORM_L2) - d) < eps)
- if __name__ == '__main__':
- NewOpenCVTests.bootstrap()
|