123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899 |
- #!/usr/bin/env python
- '''
- Simple "Square Detector" program.
- Loads several images sequentially and tries to find squares in each image.
- '''
- # Python 2/3 compatibility
- import sys
- PY3 = sys.version_info[0] == 3
- if PY3:
- xrange = range
- import numpy as np
- import cv2 as cv
- def angle_cos(p0, p1, p2):
- d1, d2 = (p0-p1).astype('float'), (p2-p1).astype('float')
- return abs( np.dot(d1, d2) / np.sqrt( np.dot(d1, d1)*np.dot(d2, d2) ) )
- def find_squares(img):
- img = cv.GaussianBlur(img, (5, 5), 0)
- squares = []
- for gray in cv.split(img):
- for thrs in xrange(0, 255, 26):
- if thrs == 0:
- bin = cv.Canny(gray, 0, 50, apertureSize=5)
- bin = cv.dilate(bin, None)
- else:
- _retval, bin = cv.threshold(gray, thrs, 255, cv.THRESH_BINARY)
- contours, _hierarchy = cv.findContours(bin, cv.RETR_LIST, cv.CHAIN_APPROX_SIMPLE)
- for cnt in contours:
- cnt_len = cv.arcLength(cnt, True)
- cnt = cv.approxPolyDP(cnt, 0.02*cnt_len, True)
- if len(cnt) == 4 and cv.contourArea(cnt) > 1000 and cv.isContourConvex(cnt):
- cnt = cnt.reshape(-1, 2)
- max_cos = np.max([angle_cos( cnt[i], cnt[(i+1) % 4], cnt[(i+2) % 4] ) for i in xrange(4)])
- if max_cos < 0.1 and filterSquares(squares, cnt):
- squares.append(cnt)
- return squares
- def intersectionRate(s1, s2):
- area, _intersection = cv.intersectConvexConvex(np.array(s1), np.array(s2))
- return 2 * area / (cv.contourArea(np.array(s1)) + cv.contourArea(np.array(s2)))
- def filterSquares(squares, square):
- for i in range(len(squares)):
- if intersectionRate(squares[i], square) > 0.95:
- return False
- return True
- from tests_common import NewOpenCVTests
- class squares_test(NewOpenCVTests):
- def test_squares(self):
- img = self.get_sample('samples/data/pic1.png')
- squares = find_squares(img)
- testSquares = [
- [[43, 25],
- [43, 129],
- [232, 129],
- [232, 25]],
- [[252, 87],
- [324, 40],
- [387, 137],
- [315, 184]],
- [[154, 178],
- [196, 180],
- [198, 278],
- [154, 278]],
- [[0, 0],
- [400, 0],
- [400, 300],
- [0, 300]]
- ]
- matches_counter = 0
- for i in range(len(squares)):
- for j in range(len(testSquares)):
- if intersectionRate(squares[i], testSquares[j]) > 0.9:
- matches_counter += 1
- self.assertGreater(matches_counter / len(testSquares), 0.9)
- self.assertLess( (len(squares) - matches_counter) / len(squares), 0.2)
- if __name__ == '__main__':
- NewOpenCVTests.bootstrap()
|