12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394 |
- #!/usr/bin/env python
- from __future__ import print_function
- import numpy as np
- import cv2 as cv
- from tests_common import NewOpenCVTests
- class Hackathon244Tests(NewOpenCVTests):
- def test_int_array(self):
- a = np.array([-1, 2, -3, 4, -5])
- absa0 = np.abs(a)
- self.assertTrue(cv.norm(a, cv.NORM_L1) == 15)
- absa1 = cv.absdiff(a, 0)
- self.assertEqual(cv.norm(absa1, absa0, cv.NORM_INF), 0)
- def test_imencode(self):
- a = np.zeros((480, 640), dtype=np.uint8)
- flag, ajpg = cv.imencode("img_q90.jpg", a, [cv.IMWRITE_JPEG_QUALITY, 90])
- self.assertEqual(flag, True)
- self.assertEqual(ajpg.dtype, np.uint8)
- self.assertTrue(isinstance(ajpg, np.ndarray), "imencode returned buffer of wrong type: {}".format(type(ajpg)))
- self.assertEqual(len(ajpg.shape), 1, "imencode returned buffer with wrong shape: {}".format(ajpg.shape))
- self.assertGreaterEqual(len(ajpg), 1, "imencode length of the returned buffer should be at least 1")
- self.assertLessEqual(
- len(ajpg), a.size,
- "imencode length of the returned buffer shouldn't exceed number of elements in original image"
- )
- def test_projectPoints(self):
- objpt = np.float64([[1,2,3]])
- imgpt0, jac0 = cv.projectPoints(objpt, np.zeros(3), np.zeros(3), np.eye(3), np.float64([]))
- imgpt1, jac1 = cv.projectPoints(objpt, np.zeros(3), np.zeros(3), np.eye(3), None)
- self.assertEqual(imgpt0.shape, (objpt.shape[0], 1, 2))
- self.assertEqual(imgpt1.shape, imgpt0.shape)
- self.assertEqual(jac0.shape, jac1.shape)
- self.assertEqual(jac0.shape[0], 2*objpt.shape[0])
- def test_estimateAffine3D(self):
- pattern_size = (11, 8)
- pattern_points = np.zeros((np.prod(pattern_size), 3), np.float32)
- pattern_points[:,:2] = np.indices(pattern_size).T.reshape(-1, 2)
- pattern_points *= 10
- (retval, out, inliers) = cv.estimateAffine3D(pattern_points, pattern_points)
- self.assertEqual(retval, 1)
- if cv.norm(out[2,:]) < 1e-3:
- out[2,2]=1
- self.assertLess(cv.norm(out, np.float64([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0]])), 1e-3)
- self.assertEqual(cv.countNonZero(inliers), pattern_size[0]*pattern_size[1])
- def test_fast(self):
- fd = cv.FastFeatureDetector_create(30, True)
- img = self.get_sample("samples/data/right02.jpg", 0)
- img = cv.medianBlur(img, 3)
- keypoints = fd.detect(img)
- self.assertTrue(600 <= len(keypoints) <= 700)
- for kpt in keypoints:
- self.assertNotEqual(kpt.response, 0)
- def check_close_angles(self, a, b, angle_delta):
- self.assertTrue(abs(a - b) <= angle_delta or
- abs(360 - abs(a - b)) <= angle_delta)
- def check_close_pairs(self, a, b, delta):
- self.assertLessEqual(abs(a[0] - b[0]), delta)
- self.assertLessEqual(abs(a[1] - b[1]), delta)
- def check_close_boxes(self, a, b, delta, angle_delta):
- self.check_close_pairs(a[0], b[0], delta)
- self.check_close_pairs(a[1], b[1], delta)
- self.check_close_angles(a[2], b[2], angle_delta)
- def test_geometry(self):
- npt = 100
- np.random.seed(244)
- a = np.random.randn(npt,2).astype('float32')*50 + 150
- be = cv.fitEllipse(a)
- br = cv.minAreaRect(a)
- mc, mr = cv.minEnclosingCircle(a)
- be0 = ((150.2511749267578, 150.77322387695312), (158.024658203125, 197.57696533203125), 37.57804489135742)
- br0 = ((161.2974090576172, 154.41793823242188), (207.7177734375, 199.2301483154297), 80.83544921875)
- mc0, mr0 = (160.41790771484375, 144.55152893066406), 136.713500977
- self.check_close_boxes(be, be0, 5, 15)
- self.check_close_boxes(br, br0, 5, 15)
- self.check_close_pairs(mc, mc0, 5)
- self.assertLessEqual(abs(mr - mr0), 5)
- if __name__ == '__main__':
- NewOpenCVTests.bootstrap()
|