123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131 |
- #!/usr/bin/python
- '''
- This example illustrates how to use cv.HoughCircles() function.
- '''
- # Python 2/3 compatibility
- from __future__ import print_function
- import cv2 as cv
- import numpy as np
- import sys
- from numpy import pi, sin, cos
- from tests_common import NewOpenCVTests
- def circleApproximation(circle):
- nPoints = 30
- dPhi = 2*pi / nPoints
- contour = []
- for i in range(nPoints):
- contour.append(([circle[0] + circle[2]*cos(i*dPhi),
- circle[1] + circle[2]*sin(i*dPhi)]))
- return np.array(contour).astype(int)
- def convContoursIntersectiponRate(c1, c2):
- s1 = cv.contourArea(c1)
- s2 = cv.contourArea(c2)
- s, _ = cv.intersectConvexConvex(c1, c2)
- return 2*s/(s1+s2)
- class houghcircles_test(NewOpenCVTests):
- def test_houghcircles(self):
- fn = "samples/data/board.jpg"
- src = self.get_sample(fn, 1)
- img = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
- img = cv.medianBlur(img, 5)
- circles = cv.HoughCircles(img, cv.HOUGH_GRADIENT, 1, 10, np.array([]), 100, 30, 1, 30)[0]
- testCircles = [[38, 181, 17.6],
- [99.7, 166, 13.12],
- [142.7, 160, 13.52],
- [223.6, 110, 8.62],
- [79.1, 206.7, 8.62],
- [47.5, 351.6, 11.64],
- [189.5, 354.4, 11.64],
- [189.8, 298.9, 10.64],
- [189.5, 252.4, 14.62],
- [252.5, 393.4, 15.62],
- [602.9, 467.5, 11.42],
- [222, 210.4, 9.12],
- [263.1, 216.7, 9.12],
- [359.8, 222.6, 9.12],
- [518.9, 120.9, 9.12],
- [413.8, 113.4, 9.12],
- [489, 127.2, 9.12],
- [448.4, 121.3, 9.12],
- [384.6, 128.9, 8.62]]
- matches_counter = 0
- for i in range(len(testCircles)):
- for j in range(len(circles)):
- tstCircle = circleApproximation(testCircles[i])
- circle = circleApproximation(circles[j])
- if convContoursIntersectiponRate(tstCircle, circle) > 0.6:
- matches_counter += 1
- self.assertGreater(float(matches_counter) / len(testCircles), .5)
- self.assertLess(float(len(circles) - matches_counter) / len(circles), .75)
- def test_houghcircles_alt(self):
- fn = "samples/data/board.jpg"
- src = self.get_sample(fn, 1)
- img = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
- img = cv.medianBlur(img, 5)
- circles = cv.HoughCircles(img, cv.HOUGH_GRADIENT_ALT, 1, 10, np.array([]), 300, 0.9, 1, 30)
- self.assertEqual(circles.shape, (1, 18, 3))
- circles = circles[0]
- testCircles = [[38, 181, 17.6],
- [99.7, 166, 13.12],
- [142.7, 160, 13.52],
- [223.6, 110, 8.62],
- [79.1, 206.7, 8.62],
- [47.5, 351.6, 11.64],
- [189.5, 354.4, 11.64],
- [189.8, 298.9, 10.64],
- [189.5, 252.4, 14.62],
- [252.5, 393.4, 15.62],
- [602.9, 467.5, 11.42],
- [222, 210.4, 9.12],
- [263.1, 216.7, 9.12],
- [359.8, 222.6, 9.12],
- [518.9, 120.9, 9.12],
- [413.8, 113.4, 9.12],
- [489, 127.2, 9.12],
- [448.4, 121.3, 9.12],
- [384.6, 128.9, 8.62]]
- matches_counter = 0
- for i in range(len(testCircles)):
- for j in range(len(circles)):
- tstCircle = circleApproximation(testCircles[i])
- circle = circleApproximation(circles[j])
- if convContoursIntersectiponRate(tstCircle, circle) > 0.6:
- matches_counter += 1
- self.assertGreater(float(matches_counter) / len(testCircles), .5)
- self.assertLess(float(len(circles) - matches_counter) / len(circles), .75)
- if __name__ == '__main__':
- NewOpenCVTests.bootstrap()
|