12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364 |
- #!/usr/bin/env python
- # Python 2/3 compatibility
- from __future__ import print_function
- import sys
- PY3 = sys.version_info[0] == 3
- if PY3:
- xrange = range
- import numpy as np
- from numpy import random
- import cv2 as cv
- def make_gaussians(cluster_n, img_size):
- points = []
- ref_distrs = []
- for _ in xrange(cluster_n):
- mean = (0.1 + 0.8*random.rand(2)) * img_size
- a = (random.rand(2, 2)-0.5)*img_size*0.1
- cov = np.dot(a.T, a) + img_size*0.05*np.eye(2)
- n = 100 + random.randint(900)
- pts = random.multivariate_normal(mean, cov, n)
- points.append( pts )
- ref_distrs.append( (mean, cov) )
- points = np.float32( np.vstack(points) )
- return points, ref_distrs
- from tests_common import NewOpenCVTests
- class gaussian_mix_test(NewOpenCVTests):
- def test_gaussian_mix(self):
- np.random.seed(10)
- cluster_n = 5
- img_size = 512
- points, ref_distrs = make_gaussians(cluster_n, img_size)
- em = cv.ml.EM_create()
- em.setClustersNumber(cluster_n)
- em.setCovarianceMatrixType(cv.ml.EM_COV_MAT_GENERIC)
- em.trainEM(points)
- means = em.getMeans()
- covs = em.getCovs() # Known bug: https://github.com/opencv/opencv/pull/4232
- #found_distrs = zip(means, covs)
- matches_count = 0
- meanEps = 0.05
- covEps = 0.1
- for i in range(cluster_n):
- for j in range(cluster_n):
- if (cv.norm(means[i] - ref_distrs[j][0], cv.NORM_L2) / cv.norm(ref_distrs[j][0], cv.NORM_L2) < meanEps and
- cv.norm(covs[i] - ref_distrs[j][1], cv.NORM_L2) / cv.norm(ref_distrs[j][1], cv.NORM_L2) < covEps):
- matches_count += 1
- self.assertEqual(matches_count, cluster_n)
- if __name__ == '__main__':
- NewOpenCVTests.bootstrap()
|