12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879 |
- #!/usr/bin/env python
- '''
- CUDA-accelerated Computer Vision functions
- '''
- # Python 2/3 compatibility
- from __future__ import print_function
- import numpy as np
- import cv2 as cv
- import os
- from tests_common import NewOpenCVTests, unittest
- class cuda_test(NewOpenCVTests):
- def setUp(self):
- super(cuda_test, self).setUp()
- if not cv.cuda.getCudaEnabledDeviceCount():
- self.skipTest("No CUDA-capable device is detected")
- def test_cuda_upload_download(self):
- npMat = (np.random.random((128, 128, 3)) * 255).astype(np.uint8)
- cuMat = cv.cuda_GpuMat()
- cuMat.upload(npMat)
- self.assertTrue(np.allclose(cuMat.download(), npMat))
- def test_cuda_upload_download_stream(self):
- stream = cv.cuda_Stream()
- npMat = (np.random.random((128, 128, 3)) * 255).astype(np.uint8)
- cuMat = cv.cuda_GpuMat(128,128, cv.CV_8UC3)
- cuMat.upload(npMat, stream)
- npMat2 = cuMat.download(stream=stream)
- stream.waitForCompletion()
- self.assertTrue(np.allclose(npMat2, npMat))
- def test_cuda_interop(self):
- npMat = (np.random.random((128, 128, 3)) * 255).astype(np.uint8)
- cuMat = cv.cuda_GpuMat()
- cuMat.upload(npMat)
- self.assertTrue(cuMat.cudaPtr() != 0)
- cuMatFromPtrSz = cv.cuda.createGpuMatFromCudaMemory(cuMat.size(),cuMat.type(),cuMat.cudaPtr(), cuMat.step)
- self.assertTrue(cuMat.cudaPtr() == cuMatFromPtrSz.cudaPtr())
- cuMatFromPtrRc = cv.cuda.createGpuMatFromCudaMemory(cuMat.size()[1],cuMat.size()[0],cuMat.type(),cuMat.cudaPtr(), cuMat.step)
- self.assertTrue(cuMat.cudaPtr() == cuMatFromPtrRc.cudaPtr())
- stream = cv.cuda_Stream()
- self.assertTrue(stream.cudaPtr() != 0)
- streamFromPtr = cv.cuda.wrapStream(stream.cudaPtr())
- self.assertTrue(stream.cudaPtr() == streamFromPtr.cudaPtr())
- asyncstream = cv.cuda_Stream(1) # cudaStreamNonBlocking
- self.assertTrue(asyncstream.cudaPtr() != 0)
- def test_cuda_buffer_pool(self):
- cv.cuda.setBufferPoolUsage(True)
- cv.cuda.setBufferPoolConfig(cv.cuda.getDevice(), 1024 * 1024 * 64, 2)
- stream_a = cv.cuda.Stream()
- pool_a = cv.cuda.BufferPool(stream_a)
- cuMat = pool_a.getBuffer(1024, 1024, cv.CV_8UC3)
- cv.cuda.setBufferPoolUsage(False)
- self.assertEqual(cuMat.size(), (1024, 1024))
- self.assertEqual(cuMat.type(), cv.CV_8UC3)
- def test_cuda_release(self):
- npMat = (np.random.random((128, 128, 3)) * 255).astype(np.uint8)
- cuMat = cv.cuda_GpuMat()
- cuMat.upload(npMat)
- cuMat.release()
- self.assertTrue(cuMat.cudaPtr() == 0)
- self.assertTrue(cuMat.step == 0)
- self.assertTrue(cuMat.size() == (0, 0))
- def test_cuda_denoising(self):
- self.assertEqual(True, hasattr(cv.cuda, 'fastNlMeansDenoising'))
- self.assertEqual(True, hasattr(cv.cuda, 'fastNlMeansDenoisingColored'))
- self.assertEqual(True, hasattr(cv.cuda, 'nonLocalMeans'))
- if __name__ == '__main__':
- NewOpenCVTests.bootstrap()
|