123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138 |
- /* ----------------------------------------------------------------------------
- * GTSAM Copyright 2010, Georgia Tech Research Corporation,
- * Atlanta, Georgia 30332-0415
- * All Rights Reserved
- * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
- * See LICENSE for the license information
- * -------------------------------------------------------------------------- */
- /**
- * @file VisualISAMExample.cpp
- * @brief A visualSLAM example for the structure-from-motion problem on a simulated dataset
- * This version uses iSAM to solve the problem incrementally
- * @author Duy-Nguyen Ta
- * @author Frank Dellaert
- */
- /**
- * A structure-from-motion example with landmarks
- * - The landmarks form a 10 meter cube
- * - The robot rotates around the landmarks, always facing towards the cube
- */
- // For loading the data
- #include "SFMdata.h"
- // Camera observations of landmarks (i.e. pixel coordinates) will be stored as Point2 (x, y).
- #include <gtsam/geometry/Point2.h>
- // Each variable in the system (poses and landmarks) must be identified with a unique key.
- // We can either use simple integer keys (1, 2, 3, ...) or symbols (X1, X2, L1).
- // Here we will use Symbols
- #include <gtsam/inference/Symbol.h>
- // In GTSAM, measurement functions are represented as 'factors'. Several common factors
- // have been provided with the library for solving robotics/SLAM/Bundle Adjustment problems.
- // Here we will use Projection factors to model the camera's landmark observations.
- // Also, we will initialize the robot at some location using a Prior factor.
- #include <gtsam/slam/ProjectionFactor.h>
- // We want to use iSAM to solve the structure-from-motion problem incrementally, so
- // include iSAM here
- #include <gtsam/nonlinear/NonlinearISAM.h>
- // iSAM requires as input a set set of new factors to be added stored in a factor graph,
- // and initial guesses for any new variables used in the added factors
- #include <gtsam/nonlinear/NonlinearFactorGraph.h>
- #include <gtsam/nonlinear/Values.h>
- #include <vector>
- using namespace std;
- using namespace gtsam;
- /* ************************************************************************* */
- int main(int argc, char* argv[]) {
- // Define the camera calibration parameters
- Cal3_S2::shared_ptr K(new Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0));
- // Define the camera observation noise model
- auto noise = noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v
- // Create the set of ground-truth landmarks
- vector<Point3> points = createPoints();
- // Create the set of ground-truth poses
- vector<Pose3> poses = createPoses();
- // Create a NonlinearISAM object which will relinearize and reorder the variables
- // every "relinearizeInterval" updates
- int relinearizeInterval = 3;
- NonlinearISAM isam(relinearizeInterval);
- // Create a Factor Graph and Values to hold the new data
- NonlinearFactorGraph graph;
- Values initialEstimate;
- // Loop over the different poses, adding the observations to iSAM incrementally
- for (size_t i = 0; i < poses.size(); ++i) {
- // Add factors for each landmark observation
- for (size_t j = 0; j < points.size(); ++j) {
- // Create ground truth measurement
- PinholeCamera<Cal3_S2> camera(poses[i], *K);
- Point2 measurement = camera.project(points[j]);
- // Add measurement
- graph.emplace_shared<GenericProjectionFactor<Pose3, Point3, Cal3_S2> >(measurement, noise,
- Symbol('x', i), Symbol('l', j), K);
- }
- // Intentionally initialize the variables off from the ground truth
- Pose3 noise(Rot3::Rodrigues(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20));
- Pose3 initial_xi = poses[i].compose(noise);
- // Add an initial guess for the current pose
- initialEstimate.insert(Symbol('x', i), initial_xi);
- // If this is the first iteration, add a prior on the first pose to set the coordinate frame
- // and a prior on the first landmark to set the scale
- // Also, as iSAM solves incrementally, we must wait until each is observed at least twice before
- // adding it to iSAM.
- if (i == 0) {
- // Add a prior on pose x0, with 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
- auto poseNoise = noiseModel::Diagonal::Sigmas(
- (Vector(6) << Vector3::Constant(0.1), Vector3::Constant(0.3)).finished());
- graph.addPrior(Symbol('x', 0), poses[0], poseNoise);
- // Add a prior on landmark l0
- auto pointNoise =
- noiseModel::Isotropic::Sigma(3, 0.1);
- graph.addPrior(Symbol('l', 0), points[0], pointNoise);
- // Add initial guesses to all observed landmarks
- Point3 noise(-0.25, 0.20, 0.15);
- for (size_t j = 0; j < points.size(); ++j) {
- // Intentionally initialize the variables off from the ground truth
- Point3 initial_lj = points[j] + noise;
- initialEstimate.insert(Symbol('l', j), initial_lj);
- }
- } else {
- // Update iSAM with the new factors
- isam.update(graph, initialEstimate);
- Values currentEstimate = isam.estimate();
- cout << "****************************************************" << endl;
- cout << "Frame " << i << ": " << endl;
- currentEstimate.print("Current estimate: ");
- // Clear the factor graph and values for the next iteration
- graph.resize(0);
- initialEstimate.clear();
- }
- }
- return 0;
- }
- /* ************************************************************************* */
|