1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980 |
- /* ----------------------------------------------------------------------------
- * GTSAM Copyright 2010, Georgia Tech Research Corporation,
- * Atlanta, Georgia 30332-0415
- * All Rights Reserved
- * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
- * See LICENSE for the license information
- * -------------------------------------------------------------------------- */
- /**
- * @file Pose2SLAMwSPCG.cpp
- * @brief A 2D Pose SLAM example using the SimpleSPCGSolver.
- * @author Yong-Dian Jian
- * @date June 2, 2012
- */
- // For an explanation of headers below, please see Pose2SLAMExample.cpp
- #include <gtsam/slam/BetweenFactor.h>
- #include <gtsam/geometry/Pose2.h>
- #include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
- // In contrast to that example, however, we will use a PCG solver here
- #include <gtsam/linear/SubgraphSolver.h>
- using namespace std;
- using namespace gtsam;
- int main(int argc, char** argv) {
- // 1. Create a factor graph container and add factors to it
- NonlinearFactorGraph graph;
- // 2a. Add a prior on the first pose, setting it to the origin
- Pose2 prior(0.0, 0.0, 0.0); // prior at origin
- auto priorNoise = noiseModel::Diagonal::Sigmas(Vector3(0.3, 0.3, 0.1));
- graph.addPrior(1, prior, priorNoise);
- // 2b. Add odometry factors
- auto odometryNoise = noiseModel::Diagonal::Sigmas(Vector3(0.2, 0.2, 0.1));
- graph.emplace_shared<BetweenFactor<Pose2> >(1, 2, Pose2(2.0, 0.0, M_PI_2), odometryNoise);
- graph.emplace_shared<BetweenFactor<Pose2> >(2, 3, Pose2(2.0, 0.0, M_PI_2), odometryNoise);
- graph.emplace_shared<BetweenFactor<Pose2> >(3, 4, Pose2(2.0, 0.0, M_PI_2), odometryNoise);
- graph.emplace_shared<BetweenFactor<Pose2> >(4, 5, Pose2(2.0, 0.0, M_PI_2), odometryNoise);
- // 2c. Add the loop closure constraint
- auto model = noiseModel::Diagonal::Sigmas(Vector3(0.2, 0.2, 0.1));
- graph.emplace_shared<BetweenFactor<Pose2> >(5, 1, Pose2(0.0, 0.0, 0.0),
- model);
- graph.print("\nFactor Graph:\n"); // print
- // 3. Create the data structure to hold the initialEstimate estimate to the
- // solution
- Values initialEstimate;
- initialEstimate.insert(1, Pose2(0.5, 0.0, 0.2));
- initialEstimate.insert(2, Pose2(2.3, 0.1, 1.1));
- initialEstimate.insert(3, Pose2(2.1, 1.9, 2.8));
- initialEstimate.insert(4, Pose2(-.3, 2.5, 4.2));
- initialEstimate.insert(5, Pose2(0.1, -0.7, 5.8));
- initialEstimate.print("\nInitial Estimate:\n"); // print
- // 4. Single Step Optimization using Levenberg-Marquardt
- LevenbergMarquardtParams parameters;
- parameters.verbosity = NonlinearOptimizerParams::ERROR;
- parameters.verbosityLM = LevenbergMarquardtParams::LAMBDA;
- // LM is still the outer optimization loop, but by specifying "Iterative"
- // below We indicate that an iterative linear solver should be used. In
- // addition, the *type* of the iterativeParams decides on the type of
- // iterative solver, in this case the SPCG (subgraph PCG)
- parameters.linearSolverType = NonlinearOptimizerParams::Iterative;
- parameters.iterativeParams = boost::make_shared<SubgraphSolverParameters>();
- LevenbergMarquardtOptimizer optimizer(graph, initialEstimate, parameters);
- Values result = optimizer.optimize();
- result.print("Final Result:\n");
- cout << "subgraph solver final error = " << graph.error(result) << endl;
- return 0;
- }
|