1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798 |
- /* ----------------------------------------------------------------------------
- * GTSAM Copyright 2010, Georgia Tech Research Corporation,
- * Atlanta, Georgia 30332-0415
- * All Rights Reserved
- * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
- * See LICENSE for the license information
- * -------------------------------------------------------------------------- */
- /**
- * @file Pose2SLAMExample_g2o.cpp
- * @brief A 2D Pose SLAM example that reads input from g2o, converts it to a factor graph and does the
- * optimization. Output is written on a file, in g2o format
- * Syntax for the script is ./Pose2SLAMExample_g2o input.g2o output.g2o
- * @date May 15, 2014
- * @author Luca Carlone
- */
- #include <gtsam/slam/dataset.h>
- #include <gtsam/geometry/Pose2.h>
- #include <gtsam/nonlinear/GaussNewtonOptimizer.h>
- #include <fstream>
- using namespace std;
- using namespace gtsam;
- // HOWTO: ./Pose2SLAMExample_g2o inputFile outputFile (maxIterations) (tukey/huber)
- int main(const int argc, const char *argv[]) {
- string kernelType = "none";
- int maxIterations = 100; // default
- string g2oFile = findExampleDataFile("noisyToyGraph.txt"); // default
- // Parse user's inputs
- if (argc > 1) {
- g2oFile = argv[1]; // input dataset filename
- }
- if (argc > 3) {
- maxIterations = atoi(argv[3]); // user can specify either tukey or huber
- }
- if (argc > 4) {
- kernelType = argv[4]; // user can specify either tukey or huber
- }
- // reading file and creating factor graph
- NonlinearFactorGraph::shared_ptr graph;
- Values::shared_ptr initial;
- bool is3D = false;
- if (kernelType.compare("none") == 0) {
- boost::tie(graph, initial) = readG2o(g2oFile, is3D);
- }
- if (kernelType.compare("huber") == 0) {
- std::cout << "Using robust kernel: huber " << std::endl;
- boost::tie(graph, initial) =
- readG2o(g2oFile, is3D, KernelFunctionTypeHUBER);
- }
- if (kernelType.compare("tukey") == 0) {
- std::cout << "Using robust kernel: tukey " << std::endl;
- boost::tie(graph, initial) =
- readG2o(g2oFile, is3D, KernelFunctionTypeTUKEY);
- }
- // Add prior on the pose having index (key) = 0
- auto priorModel = //
- noiseModel::Diagonal::Variances(Vector3(1e-6, 1e-6, 1e-8));
- graph->addPrior(0, Pose2(), priorModel);
- std::cout << "Adding prior on pose 0 " << std::endl;
- GaussNewtonParams params;
- params.setVerbosity("TERMINATION");
- if (argc > 3) {
- params.maxIterations = maxIterations;
- std::cout << "User required to perform maximum " << params.maxIterations
- << " iterations " << std::endl;
- }
- std::cout << "Optimizing the factor graph" << std::endl;
- GaussNewtonOptimizer optimizer(*graph, *initial, params);
- Values result = optimizer.optimize();
- std::cout << "Optimization complete" << std::endl;
- std::cout << "initial error=" << graph->error(*initial) << std::endl;
- std::cout << "final error=" << graph->error(result) << std::endl;
- if (argc < 3) {
- result.print("result");
- } else {
- const string outputFile = argv[2];
- std::cout << "Writing results to file: " << outputFile << std::endl;
- NonlinearFactorGraph::shared_ptr graphNoKernel;
- Values::shared_ptr initial2;
- boost::tie(graphNoKernel, initial2) = readG2o(g2oFile);
- writeG2o(*graphNoKernel, result, outputFile);
- std::cout << "done! " << std::endl;
- }
- return 0;
- }
|