123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128 |
- /* ----------------------------------------------------------------------------
- * GTSAM Copyright 2010, Georgia Tech Research Corporation,
- * Atlanta, Georgia 30332-0415
- * All Rights Reserved
- * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
- * See LICENSE for the license information
- * -------------------------------------------------------------------------- */
- /**
- * @file Pose2SLAMExample.cpp
- * @brief A 2D Pose SLAM example
- * @date Oct 21, 2010
- * @author Yong Dian Jian
- */
- /**
- * A simple 2D pose slam example
- * - The robot moves in a 2 meter square
- * - The robot moves 2 meters each step, turning 90 degrees after each step
- * - The robot initially faces along the X axis (horizontal, to the right in 2D)
- * - We have full odometry between pose
- * - We have a loop closure constraint when the robot returns to the first position
- */
- // In planar SLAM example we use Pose2 variables (x, y, theta) to represent the robot poses
- #include <gtsam/geometry/Pose2.h>
- // We will use simple integer Keys to refer to the robot poses.
- #include <gtsam/inference/Key.h>
- // In GTSAM, measurement functions are represented as 'factors'. Several common factors
- // have been provided with the library for solving robotics/SLAM/Bundle Adjustment problems.
- // Here we will use Between factors for the relative motion described by odometry measurements.
- // We will also use a Between Factor to encode the loop closure constraint
- // Also, we will initialize the robot at the origin using a Prior factor.
- #include <gtsam/slam/BetweenFactor.h>
- // When the factors are created, we will add them to a Factor Graph. As the factors we are using
- // are nonlinear factors, we will need a Nonlinear Factor Graph.
- #include <gtsam/nonlinear/NonlinearFactorGraph.h>
- // Finally, once all of the factors have been added to our factor graph, we will want to
- // solve/optimize to graph to find the best (Maximum A Posteriori) set of variable values.
- // GTSAM includes several nonlinear optimizers to perform this step. Here we will use the
- // a Gauss-Newton solver
- #include <gtsam/nonlinear/GaussNewtonOptimizer.h>
- // Once the optimized values have been calculated, we can also calculate the marginal covariance
- // of desired variables
- #include <gtsam/nonlinear/Marginals.h>
- // The nonlinear solvers within GTSAM are iterative solvers, meaning they linearize the
- // nonlinear functions around an initial linearization point, then solve the linear system
- // to update the linearization point. This happens repeatedly until the solver converges
- // to a consistent set of variable values. This requires us to specify an initial guess
- // for each variable, held in a Values container.
- #include <gtsam/nonlinear/Values.h>
- using namespace std;
- using namespace gtsam;
- int main(int argc, char** argv) {
- // 1. Create a factor graph container and add factors to it
- NonlinearFactorGraph graph;
- // 2a. Add a prior on the first pose, setting it to the origin
- // A prior factor consists of a mean and a noise model (covariance matrix)
- auto priorNoise = noiseModel::Diagonal::Sigmas(Vector3(0.3, 0.3, 0.1));
- graph.addPrior(1, Pose2(0, 0, 0), priorNoise);
- // For simplicity, we will use the same noise model for odometry and loop closures
- auto model = noiseModel::Diagonal::Sigmas(Vector3(0.2, 0.2, 0.1));
- // 2b. Add odometry factors
- // Create odometry (Between) factors between consecutive poses
- graph.emplace_shared<BetweenFactor<Pose2> >(1, 2, Pose2(2, 0, 0), model);
- graph.emplace_shared<BetweenFactor<Pose2> >(2, 3, Pose2(2, 0, M_PI_2), model);
- graph.emplace_shared<BetweenFactor<Pose2> >(3, 4, Pose2(2, 0, M_PI_2), model);
- graph.emplace_shared<BetweenFactor<Pose2> >(4, 5, Pose2(2, 0, M_PI_2), model);
- // 2c. Add the loop closure constraint
- // This factor encodes the fact that we have returned to the same pose. In real systems,
- // these constraints may be identified in many ways, such as appearance-based techniques
- // with camera images. We will use another Between Factor to enforce this constraint:
- graph.emplace_shared<BetweenFactor<Pose2> >(5, 2, Pose2(2, 0, M_PI_2), model);
- graph.print("\nFactor Graph:\n"); // print
- // 3. Create the data structure to hold the initialEstimate estimate to the solution
- // For illustrative purposes, these have been deliberately set to incorrect values
- Values initialEstimate;
- initialEstimate.insert(1, Pose2(0.5, 0.0, 0.2));
- initialEstimate.insert(2, Pose2(2.3, 0.1, -0.2));
- initialEstimate.insert(3, Pose2(4.1, 0.1, M_PI_2));
- initialEstimate.insert(4, Pose2(4.0, 2.0, M_PI));
- initialEstimate.insert(5, Pose2(2.1, 2.1, -M_PI_2));
- initialEstimate.print("\nInitial Estimate:\n"); // print
- // 4. Optimize the initial values using a Gauss-Newton nonlinear optimizer
- // The optimizer accepts an optional set of configuration parameters,
- // controlling things like convergence criteria, the type of linear
- // system solver to use, and the amount of information displayed during
- // optimization. We will set a few parameters as a demonstration.
- GaussNewtonParams parameters;
- // Stop iterating once the change in error between steps is less than this value
- parameters.relativeErrorTol = 1e-5;
- // Do not perform more than N iteration steps
- parameters.maxIterations = 100;
- // Create the optimizer ...
- GaussNewtonOptimizer optimizer(graph, initialEstimate, parameters);
- // ... and optimize
- Values result = optimizer.optimize();
- result.print("Final Result:\n");
- // 5. Calculate and print marginal covariances for all variables
- cout.precision(3);
- Marginals marginals(graph, result);
- cout << "x1 covariance:\n" << marginals.marginalCovariance(1) << endl;
- cout << "x2 covariance:\n" << marginals.marginalCovariance(2) << endl;
- cout << "x3 covariance:\n" << marginals.marginalCovariance(3) << endl;
- cout << "x4 covariance:\n" << marginals.marginalCovariance(4) << endl;
- cout << "x5 covariance:\n" << marginals.marginalCovariance(5) << endl;
- return 0;
- }
|