12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697 |
- /* ----------------------------------------------------------------------------
- * GTSAM Copyright 2010, Georgia Tech Research Corporation,
- * Atlanta, Georgia 30332-0415
- * All Rights Reserved
- * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
- * See LICENSE for the license information
- * -------------------------------------------------------------------------- */
- /**
- * @file OdometryExample.cpp
- * @brief Simple robot motion example, with prior and two odometry measurements
- * @author Frank Dellaert
- */
- /**
- * Example of a simple 2D localization example
- * - Robot poses are facing along the X axis (horizontal, to the right in 2D)
- * - The robot moves 2 meters each step
- * - We have full odometry between poses
- */
- // We will use Pose2 variables (x, y, theta) to represent the robot positions
- #include <gtsam/geometry/Pose2.h>
- // In GTSAM, measurement functions are represented as 'factors'. Several common factors
- // have been provided with the library for solving robotics/SLAM/Bundle Adjustment problems.
- // Here we will use Between factors for the relative motion described by odometry measurements.
- // Also, we will initialize the robot at the origin using a Prior factor.
- #include <gtsam/slam/BetweenFactor.h>
- // When the factors are created, we will add them to a Factor Graph. As the factors we are using
- // are nonlinear factors, we will need a Nonlinear Factor Graph.
- #include <gtsam/nonlinear/NonlinearFactorGraph.h>
- // Finally, once all of the factors have been added to our factor graph, we will want to
- // solve/optimize to graph to find the best (Maximum A Posteriori) set of variable values.
- // GTSAM includes several nonlinear optimizers to perform this step. Here we will use the
- // Levenberg-Marquardt solver
- #include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
- // Once the optimized values have been calculated, we can also calculate the marginal covariance
- // of desired variables
- #include <gtsam/nonlinear/Marginals.h>
- // The nonlinear solvers within GTSAM are iterative solvers, meaning they linearize the
- // nonlinear functions around an initial linearization point, then solve the linear system
- // to update the linearization point. This happens repeatedly until the solver converges
- // to a consistent set of variable values. This requires us to specify an initial guess
- // for each variable, held in a Values container.
- #include <gtsam/nonlinear/Values.h>
- using namespace std;
- using namespace gtsam;
- int main(int argc, char** argv) {
- // Create an empty nonlinear factor graph
- NonlinearFactorGraph graph;
- // Add a prior on the first pose, setting it to the origin
- // A prior factor consists of a mean and a noise model (covariance matrix)
- Pose2 priorMean(0.0, 0.0, 0.0); // prior at origin
- auto priorNoise = noiseModel::Diagonal::Sigmas(Vector3(0.3, 0.3, 0.1));
- graph.addPrior(1, priorMean, priorNoise);
- // Add odometry factors
- Pose2 odometry(2.0, 0.0, 0.0);
- // For simplicity, we will use the same noise model for each odometry factor
- auto odometryNoise = noiseModel::Diagonal::Sigmas(Vector3(0.2, 0.2, 0.1));
- // Create odometry (Between) factors between consecutive poses
- graph.emplace_shared<BetweenFactor<Pose2> >(1, 2, odometry, odometryNoise);
- graph.emplace_shared<BetweenFactor<Pose2> >(2, 3, odometry, odometryNoise);
- graph.print("\nFactor Graph:\n"); // print
- // Create the data structure to hold the initialEstimate estimate to the solution
- // For illustrative purposes, these have been deliberately set to incorrect values
- Values initial;
- initial.insert(1, Pose2(0.5, 0.0, 0.2));
- initial.insert(2, Pose2(2.3, 0.1, -0.2));
- initial.insert(3, Pose2(4.1, 0.1, 0.1));
- initial.print("\nInitial Estimate:\n"); // print
- // optimize using Levenberg-Marquardt optimization
- Values result = LevenbergMarquardtOptimizer(graph, initial).optimize();
- result.print("Final Result:\n");
- // Calculate and print marginal covariances for all variables
- cout.precision(2);
- Marginals marginals(graph, result);
- cout << "x1 covariance:\n" << marginals.marginalCovariance(1) << endl;
- cout << "x2 covariance:\n" << marginals.marginalCovariance(2) << endl;
- cout << "x3 covariance:\n" << marginals.marginalCovariance(3) << endl;
- return 0;
- }
|