123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324 |
- /* ----------------------------------------------------------------------------
- * GTSAM Copyright 2010, Georgia Tech Research Corporation,
- * Atlanta, Georgia 30332-0415
- * All Rights Reserved
- * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
- * See LICENSE for the license information
- * -------------------------------------------------------------------------- */
- /**
- * @file ImuFactorsExample
- * @brief Test example for using GTSAM ImuFactor and ImuCombinedFactor
- * navigation code.
- * @author Garrett (ghemann@gmail.com), Luca Carlone
- */
- /**
- * Example of use of the imuFactors (imuFactor and combinedImuFactor) in
- * conjunction with GPS
- * - imuFactor is used by default. You can test combinedImuFactor by
- * appending a `-c` flag at the end (see below for example command).
- * - we read IMU and GPS data from a CSV file, with the following format:
- * A row starting with "i" is the first initial position formatted with
- * N, E, D, qx, qY, qZ, qW, velN, velE, velD
- * A row starting with "0" is an imu measurement
- * (body frame - Forward, Right, Down)
- * linAccX, linAccY, linAccZ, angVelX, angVelY, angVelX
- * A row starting with "1" is a gps correction formatted with
- * N, E, D, qX, qY, qZ, qW
- * Note that for GPS correction, we're only using the position not the
- * rotation. The rotation is provided in the file for ground truth comparison.
- *
- * See usage: ./ImuFactorsExample --help
- */
- #include <boost/program_options.hpp>
- // GTSAM related includes.
- #include <gtsam/inference/Symbol.h>
- #include <gtsam/navigation/CombinedImuFactor.h>
- #include <gtsam/navigation/GPSFactor.h>
- #include <gtsam/navigation/ImuFactor.h>
- #include <gtsam/nonlinear/ISAM2.h>
- #include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
- #include <gtsam/nonlinear/NonlinearFactorGraph.h>
- #include <gtsam/slam/BetweenFactor.h>
- #include <gtsam/slam/dataset.h>
- #include <cstring>
- #include <fstream>
- #include <iostream>
- using namespace gtsam;
- using namespace std;
- using symbol_shorthand::B; // Bias (ax,ay,az,gx,gy,gz)
- using symbol_shorthand::V; // Vel (xdot,ydot,zdot)
- using symbol_shorthand::X; // Pose3 (x,y,z,r,p,y)
- namespace po = boost::program_options;
- po::variables_map parseOptions(int argc, char* argv[]) {
- po::options_description desc;
- desc.add_options()("help,h", "produce help message")(
- "data_csv_path", po::value<string>()->default_value("imuAndGPSdata.csv"),
- "path to the CSV file with the IMU data")(
- "output_filename",
- po::value<string>()->default_value("imuFactorExampleResults.csv"),
- "path to the result file to use")("use_isam", po::bool_switch(),
- "use ISAM as the optimizer");
- po::variables_map vm;
- po::store(po::parse_command_line(argc, argv, desc), vm);
- if (vm.count("help")) {
- cout << desc << "\n";
- exit(1);
- }
- return vm;
- }
- boost::shared_ptr<PreintegratedCombinedMeasurements::Params> imuParams() {
- // We use the sensor specs to build the noise model for the IMU factor.
- double accel_noise_sigma = 0.0003924;
- double gyro_noise_sigma = 0.000205689024915;
- double accel_bias_rw_sigma = 0.004905;
- double gyro_bias_rw_sigma = 0.000001454441043;
- Matrix33 measured_acc_cov = I_3x3 * pow(accel_noise_sigma, 2);
- Matrix33 measured_omega_cov = I_3x3 * pow(gyro_noise_sigma, 2);
- Matrix33 integration_error_cov =
- I_3x3 * 1e-8; // error committed in integrating position from velocities
- Matrix33 bias_acc_cov = I_3x3 * pow(accel_bias_rw_sigma, 2);
- Matrix33 bias_omega_cov = I_3x3 * pow(gyro_bias_rw_sigma, 2);
- Matrix66 bias_acc_omega_int =
- I_6x6 * 1e-5; // error in the bias used for preintegration
- auto p = PreintegratedCombinedMeasurements::Params::MakeSharedD(0.0);
- // PreintegrationBase params:
- p->accelerometerCovariance =
- measured_acc_cov; // acc white noise in continuous
- p->integrationCovariance =
- integration_error_cov; // integration uncertainty continuous
- // should be using 2nd order integration
- // PreintegratedRotation params:
- p->gyroscopeCovariance =
- measured_omega_cov; // gyro white noise in continuous
- // PreintegrationCombinedMeasurements params:
- p->biasAccCovariance = bias_acc_cov; // acc bias in continuous
- p->biasOmegaCovariance = bias_omega_cov; // gyro bias in continuous
- p->biasAccOmegaInt = bias_acc_omega_int;
- return p;
- }
- int main(int argc, char* argv[]) {
- string data_filename, output_filename;
- bool use_isam = false;
- po::variables_map var_map = parseOptions(argc, argv);
- data_filename = findExampleDataFile(var_map["data_csv_path"].as<string>());
- output_filename = var_map["output_filename"].as<string>();
- use_isam = var_map["use_isam"].as<bool>();
- ISAM2* isam2 = 0;
- if (use_isam) {
- printf("Using ISAM2\n");
- ISAM2Params parameters;
- parameters.relinearizeThreshold = 0.01;
- parameters.relinearizeSkip = 1;
- isam2 = new ISAM2(parameters);
- } else {
- printf("Using Levenberg Marquardt Optimizer\n");
- }
- // Set up output file for plotting errors
- FILE* fp_out = fopen(output_filename.c_str(), "w+");
- fprintf(fp_out,
- "#time(s),x(m),y(m),z(m),qx,qy,qz,qw,gt_x(m),gt_y(m),gt_z(m),gt_qx,"
- "gt_qy,gt_qz,gt_qw\n");
- // Begin parsing the CSV file. Input the first line for initialization.
- // From there, we'll iterate through the file and we'll preintegrate the IMU
- // or add in the GPS given the input.
- ifstream file(data_filename.c_str());
- string value;
- // Format is (N,E,D,qX,qY,qZ,qW,velN,velE,velD)
- Vector10 initial_state;
- getline(file, value, ','); // i
- for (int i = 0; i < 9; i++) {
- getline(file, value, ',');
- initial_state(i) = stof(value.c_str());
- }
- getline(file, value, '\n');
- initial_state(9) = stof(value.c_str());
- cout << "initial state:\n" << initial_state.transpose() << "\n\n";
- // Assemble initial quaternion through GTSAM constructor
- // ::quaternion(w,x,y,z);
- Rot3 prior_rotation = Rot3::Quaternion(initial_state(6), initial_state(3),
- initial_state(4), initial_state(5));
- Point3 prior_point(initial_state.head<3>());
- Pose3 prior_pose(prior_rotation, prior_point);
- Vector3 prior_velocity(initial_state.tail<3>());
- imuBias::ConstantBias prior_imu_bias; // assume zero initial bias
- Values initial_values;
- int correction_count = 0;
- initial_values.insert(X(correction_count), prior_pose);
- initial_values.insert(V(correction_count), prior_velocity);
- initial_values.insert(B(correction_count), prior_imu_bias);
- // Assemble prior noise model and add it the graph.`
- auto pose_noise_model = noiseModel::Diagonal::Sigmas(
- (Vector(6) << 0.01, 0.01, 0.01, 0.5, 0.5, 0.5)
- .finished()); // rad,rad,rad,m, m, m
- auto velocity_noise_model = noiseModel::Isotropic::Sigma(3, 0.1); // m/s
- auto bias_noise_model = noiseModel::Isotropic::Sigma(6, 1e-3);
- // Add all prior factors (pose, velocity, bias) to the graph.
- NonlinearFactorGraph* graph = new NonlinearFactorGraph();
- graph->addPrior(X(correction_count), prior_pose, pose_noise_model);
- graph->addPrior(V(correction_count), prior_velocity, velocity_noise_model);
- graph->addPrior(B(correction_count), prior_imu_bias, bias_noise_model);
- auto p = imuParams();
- std::shared_ptr<PreintegrationType> preintegrated =
- std::make_shared<PreintegratedImuMeasurements>(p, prior_imu_bias);
- assert(preintegrated);
- // Store previous state for imu integration and latest predicted outcome.
- NavState prev_state(prior_pose, prior_velocity);
- NavState prop_state = prev_state;
- imuBias::ConstantBias prev_bias = prior_imu_bias;
- // Keep track of total error over the entire run as simple performance metric.
- double current_position_error = 0.0, current_orientation_error = 0.0;
- double output_time = 0.0;
- double dt = 0.005; // The real system has noise, but here, results are nearly
- // exactly the same, so keeping this for simplicity.
- // All priors have been set up, now iterate through the data file.
- while (file.good()) {
- // Parse out first value
- getline(file, value, ',');
- int type = stoi(value.c_str());
- if (type == 0) { // IMU measurement
- Vector6 imu;
- for (int i = 0; i < 5; ++i) {
- getline(file, value, ',');
- imu(i) = stof(value.c_str());
- }
- getline(file, value, '\n');
- imu(5) = stof(value.c_str());
- // Adding the IMU preintegration.
- preintegrated->integrateMeasurement(imu.head<3>(), imu.tail<3>(), dt);
- } else if (type == 1) { // GPS measurement
- Vector7 gps;
- for (int i = 0; i < 6; ++i) {
- getline(file, value, ',');
- gps(i) = stof(value.c_str());
- }
- getline(file, value, '\n');
- gps(6) = stof(value.c_str());
- correction_count++;
- // Adding IMU factor and GPS factor and optimizing.
- auto preint_imu =
- dynamic_cast<const PreintegratedImuMeasurements&>(*preintegrated);
- ImuFactor imu_factor(X(correction_count - 1), V(correction_count - 1),
- X(correction_count), V(correction_count),
- B(correction_count - 1), preint_imu);
- graph->add(imu_factor);
- imuBias::ConstantBias zero_bias(Vector3(0, 0, 0), Vector3(0, 0, 0));
- graph->add(BetweenFactor<imuBias::ConstantBias>(
- B(correction_count - 1), B(correction_count), zero_bias,
- bias_noise_model));
- auto correction_noise = noiseModel::Isotropic::Sigma(3, 1.0);
- GPSFactor gps_factor(X(correction_count),
- Point3(gps(0), // N,
- gps(1), // E,
- gps(2)), // D,
- correction_noise);
- graph->add(gps_factor);
- // Now optimize and compare results.
- prop_state = preintegrated->predict(prev_state, prev_bias);
- initial_values.insert(X(correction_count), prop_state.pose());
- initial_values.insert(V(correction_count), prop_state.v());
- initial_values.insert(B(correction_count), prev_bias);
- Values result;
- if (use_isam) {
- isam2->update(*graph, initial_values);
- isam2->update();
- result = isam2->calculateEstimate();
- // reset the graph
- graph->resize(0);
- initial_values.clear();
- } else {
- LevenbergMarquardtOptimizer optimizer(*graph, initial_values);
- result = optimizer.optimize();
- }
- // Overwrite the beginning of the preintegration for the next step.
- prev_state = NavState(result.at<Pose3>(X(correction_count)),
- result.at<Vector3>(V(correction_count)));
- prev_bias = result.at<imuBias::ConstantBias>(B(correction_count));
- // Reset the preintegration object.
- preintegrated->resetIntegrationAndSetBias(prev_bias);
- // Print out the position and orientation error for comparison.
- Vector3 gtsam_position = prev_state.pose().translation();
- Vector3 position_error = gtsam_position - gps.head<3>();
- current_position_error = position_error.norm();
- Quaternion gtsam_quat = prev_state.pose().rotation().toQuaternion();
- Quaternion gps_quat(gps(6), gps(3), gps(4), gps(5));
- Quaternion quat_error = gtsam_quat * gps_quat.inverse();
- quat_error.normalize();
- Vector3 euler_angle_error(quat_error.x() * 2, quat_error.y() * 2,
- quat_error.z() * 2);
- current_orientation_error = euler_angle_error.norm();
- // display statistics
- cout << "Position error:" << current_position_error << "\t "
- << "Angular error:" << current_orientation_error << "\n";
- fprintf(fp_out, "%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f\n",
- output_time, gtsam_position(0), gtsam_position(1),
- gtsam_position(2), gtsam_quat.x(), gtsam_quat.y(), gtsam_quat.z(),
- gtsam_quat.w(), gps(0), gps(1), gps(2), gps_quat.x(),
- gps_quat.y(), gps_quat.z(), gps_quat.w());
- output_time += 1.0;
- } else {
- cerr << "ERROR parsing file\n";
- return 1;
- }
- }
- fclose(fp_out);
- cout << "Complete, results written to " << output_filename << "\n\n";
- return 0;
- }
|