123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2019 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: sameeragarwal@google.com (Sameer Agarwal)
- #ifndef CERES_PUBLIC_NUMERIC_DIFF_FIRST_ORDER_FUNCTION_H_
- #define CERES_PUBLIC_NUMERIC_DIFF_FIRST_ORDER_FUNCTION_H_
- #include <algorithm>
- #include <memory>
- #include "ceres/first_order_function.h"
- #include "ceres/internal/eigen.h"
- #include "ceres/internal/fixed_array.h"
- #include "ceres/internal/numeric_diff.h"
- #include "ceres/internal/parameter_dims.h"
- #include "ceres/internal/variadic_evaluate.h"
- #include "ceres/numeric_diff_options.h"
- #include "ceres/types.h"
- #include "glog/logging.h"
- namespace ceres {
- // Creates FirstOrderFunctions as needed by the GradientProblem
- // framework, with gradients computed via numeric differentiation. For
- // more information on numeric differentiation, see the wikipedia
- // article at https://en.wikipedia.org/wiki/Numerical_differentiation
- //
- // To get an numerically differentiated cost function, you must define
- // a class with an operator() (a functor) that computes the cost.
- //
- // The function must write the computed value in the last argument
- // (the only non-const one) and return true to indicate success.
- //
- // For example, consider a scalar error e = x'y - a, where both x and y are
- // two-dimensional column vector parameters, the prime sign indicates
- // transposition, and a is a constant.
- //
- // To write an numerically-differentiable cost function for the above model,
- // first define the object
- //
- // class QuadraticCostFunctor {
- // public:
- // explicit QuadraticCostFunctor(double a) : a_(a) {}
- // bool operator()(const double* const xy, double* cost) const {
- // constexpr int kInputVectorLength = 2;
- // const double* const x = xy;
- // const double* const y = xy + kInputVectorLength;
- // *cost = x[0] * y[0] + x[1] * y[1] - a_;
- // return true;
- // }
- //
- // private:
- // double a_;
- // };
- //
- //
- // Note that in the declaration of operator() the input parameters xy
- // come first, and are passed as const pointers to array of
- // doubles. The output cost is the last parameter.
- //
- // Then given this class definition, the numerically differentiated
- // first order function with central differences used for computing the
- // derivative can be constructed as follows.
- //
- // FirstOrderFunction* function
- // = new NumericDiffFirstOrderFunction<MyScalarCostFunctor, CENTRAL, 4>(
- // new QuadraticCostFunctor(1.0)); ^ ^ ^
- // | | |
- // Finite Differencing Scheme -+ | |
- // Dimension of xy ------------------------+
- //
- //
- // In the instantiation above, the template parameters following
- // "QuadraticCostFunctor", "CENTRAL, 4", describe the finite
- // differencing scheme as "central differencing" and the functor as
- // computing its cost from a 4 dimensional input.
- //
- // If the size of the parameter vector is not known at compile time, then an
- // alternate construction syntax can be used:
- //
- // FirstOrderFunction* function
- // = new NumericDiffFirstOrderFunction<MyScalarCostFunctor, CENTRAL>(
- // new QuadraticCostFunctor(1.0), 4);
- //
- // Note that instead of passing 4 as a template argument, it is now passed as
- // the second argument to the constructor.
- template <typename FirstOrderFunctor,
- NumericDiffMethodType kMethod,
- int kNumParameters = DYNAMIC>
- class NumericDiffFirstOrderFunction final : public FirstOrderFunction {
- public:
- // Constructor for the case where the parameter size is known at compile time.
- explicit NumericDiffFirstOrderFunction(
- FirstOrderFunctor* functor,
- Ownership ownership = TAKE_OWNERSHIP,
- const NumericDiffOptions& options = NumericDiffOptions())
- : functor_(functor),
- num_parameters_(kNumParameters),
- ownership_(ownership),
- options_(options) {
- static_assert(kNumParameters != DYNAMIC,
- "Number of parameters must be static when defined via the "
- "template parameter. Use the other constructor for "
- "dynamically sized functions.");
- static_assert(kNumParameters > 0, "kNumParameters must be positive");
- }
- // Constructor for the case where the parameter size is specified at run time.
- explicit NumericDiffFirstOrderFunction(
- FirstOrderFunctor* functor,
- int num_parameters,
- Ownership ownership = TAKE_OWNERSHIP,
- const NumericDiffOptions& options = NumericDiffOptions())
- : functor_(functor),
- num_parameters_(num_parameters),
- ownership_(ownership),
- options_(options) {
- static_assert(
- kNumParameters == DYNAMIC,
- "Template parameter must be DYNAMIC when using this constructor. If "
- "you want to provide the number of parameters statically use the other "
- "constructor.");
- CHECK_GT(num_parameters, 0);
- }
- ~NumericDiffFirstOrderFunction() override {
- if (ownership_ != TAKE_OWNERSHIP) {
- functor_.release();
- }
- }
- bool Evaluate(const double* const parameters,
- double* cost,
- double* gradient) const override {
- // Get the function value (cost) at the the point to evaluate.
- if (!(*functor_)(parameters, cost)) {
- return false;
- }
- if (gradient == nullptr) {
- return true;
- }
- // Create a copy of the parameters which will get mutated.
- internal::FixedArray<double, 32> parameters_copy(num_parameters_);
- std::copy_n(parameters, num_parameters_, parameters_copy.data());
- double* parameters_ptr = parameters_copy.data();
- constexpr int kNumResiduals = 1;
- if constexpr (kNumParameters == DYNAMIC) {
- internal::FirstOrderFunctorAdapter<FirstOrderFunctor> fofa(*functor_);
- return internal::NumericDiff<
- internal::FirstOrderFunctorAdapter<FirstOrderFunctor>,
- kMethod,
- kNumResiduals,
- internal::DynamicParameterDims,
- 0,
- DYNAMIC>::EvaluateJacobianForParameterBlock(&fofa,
- cost,
- options_,
- kNumResiduals,
- 0,
- num_parameters_,
- ¶meters_ptr,
- gradient);
- } else {
- return internal::EvaluateJacobianForParameterBlocks<
- internal::StaticParameterDims<kNumParameters>>::
- template Apply<kMethod, 1>(functor_.get(),
- cost,
- options_,
- kNumResiduals,
- ¶meters_ptr,
- &gradient);
- }
- }
- int NumParameters() const override { return num_parameters_; }
- const FirstOrderFunctor& functor() const { return *functor_; }
- private:
- std::unique_ptr<FirstOrderFunctor> functor_;
- const int num_parameters_;
- const Ownership ownership_;
- const NumericDiffOptions options_;
- };
- } // namespace ceres
- #endif // CERES_PUBLIC_NUMERIC_DIFF_FIRST_ORDER_FUNCTION_H_
|