123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: sameeragarwal@google.com (Sameer Agarwal)
- // mierle@gmail.com (Keir Mierle)
- #ifndef CERES_PUBLIC_DYNAMIC_AUTODIFF_COST_FUNCTION_H_
- #define CERES_PUBLIC_DYNAMIC_AUTODIFF_COST_FUNCTION_H_
- #include <cmath>
- #include <memory>
- #include <numeric>
- #include <vector>
- #include "ceres/dynamic_cost_function.h"
- #include "ceres/internal/fixed_array.h"
- #include "ceres/jet.h"
- #include "ceres/types.h"
- #include "glog/logging.h"
- namespace ceres {
- // This autodiff implementation differs from the one found in
- // autodiff_cost_function.h by supporting autodiff on cost functions
- // with variable numbers of parameters with variable sizes. With the
- // other implementation, all the sizes (both the number of parameter
- // blocks and the size of each block) must be fixed at compile time.
- //
- // The functor API differs slightly from the API for fixed size
- // autodiff; the expected interface for the cost functors is:
- //
- // struct MyCostFunctor {
- // template<typename T>
- // bool operator()(T const* const* parameters, T* residuals) const {
- // // Use parameters[i] to access the i'th parameter block.
- // }
- // };
- //
- // Since the sizing of the parameters is done at runtime, you must
- // also specify the sizes after creating the dynamic autodiff cost
- // function. For example:
- //
- // DynamicAutoDiffCostFunction<MyCostFunctor, 3> cost_function(
- // new MyCostFunctor());
- // cost_function.AddParameterBlock(5);
- // cost_function.AddParameterBlock(10);
- // cost_function.SetNumResiduals(21);
- //
- // Under the hood, the implementation evaluates the cost function
- // multiple times, computing a small set of the derivatives (four by
- // default, controlled by the Stride template parameter) with each
- // pass. There is a tradeoff with the size of the passes; you may want
- // to experiment with the stride.
- template <typename CostFunctor, int Stride = 4>
- class DynamicAutoDiffCostFunction final : public DynamicCostFunction {
- public:
- // Takes ownership by default.
- explicit DynamicAutoDiffCostFunction(CostFunctor* functor,
- Ownership ownership = TAKE_OWNERSHIP)
- : functor_(functor), ownership_(ownership) {}
- DynamicAutoDiffCostFunction(DynamicAutoDiffCostFunction&& other)
- : functor_(std::move(other.functor_)), ownership_(other.ownership_) {}
- ~DynamicAutoDiffCostFunction() override {
- // Manually release pointer if configured to not take ownership
- // rather than deleting only if ownership is taken. This is to
- // stay maximally compatible to old user code which may have
- // forgotten to implement a virtual destructor, from when the
- // AutoDiffCostFunction always took ownership.
- if (ownership_ == DO_NOT_TAKE_OWNERSHIP) {
- functor_.release();
- }
- }
- bool Evaluate(double const* const* parameters,
- double* residuals,
- double** jacobians) const override {
- CHECK_GT(num_residuals(), 0)
- << "You must call DynamicAutoDiffCostFunction::SetNumResiduals() "
- << "before DynamicAutoDiffCostFunction::Evaluate().";
- if (jacobians == nullptr) {
- return (*functor_)(parameters, residuals);
- }
- // The difficulty with Jets, as implemented in Ceres, is that they were
- // originally designed for strictly compile-sized use. At this point, there
- // is a large body of code that assumes inside a cost functor it is
- // acceptable to do e.g. T(1.5) and get an appropriately sized jet back.
- //
- // Unfortunately, it is impossible to communicate the expected size of a
- // dynamically sized jet to the static instantiations that existing code
- // depends on.
- //
- // To work around this issue, the solution here is to evaluate the
- // jacobians in a series of passes, each one computing Stride *
- // num_residuals() derivatives. This is done with small, fixed-size jets.
- const int num_parameter_blocks =
- static_cast<int>(parameter_block_sizes().size());
- const int num_parameters = std::accumulate(
- parameter_block_sizes().begin(), parameter_block_sizes().end(), 0);
- // Allocate scratch space for the strided evaluation.
- using JetT = Jet<double, Stride>;
- internal::FixedArray<JetT, (256 * 7) / sizeof(JetT)> input_jets(
- num_parameters);
- internal::FixedArray<JetT, (256 * 7) / sizeof(JetT)> output_jets(
- num_residuals());
- // Make the parameter pack that is sent to the functor (reused).
- internal::FixedArray<Jet<double, Stride>*> jet_parameters(
- num_parameter_blocks, nullptr);
- int num_active_parameters = 0;
- // To handle constant parameters between non-constant parameter blocks, the
- // start position --- a raw parameter index --- of each contiguous block of
- // non-constant parameters is recorded in start_derivative_section.
- std::vector<int> start_derivative_section;
- bool in_derivative_section = false;
- int parameter_cursor = 0;
- // Discover the derivative sections and set the parameter values.
- for (int i = 0; i < num_parameter_blocks; ++i) {
- jet_parameters[i] = &input_jets[parameter_cursor];
- const int parameter_block_size = parameter_block_sizes()[i];
- if (jacobians[i] != nullptr) {
- if (!in_derivative_section) {
- start_derivative_section.push_back(parameter_cursor);
- in_derivative_section = true;
- }
- num_active_parameters += parameter_block_size;
- } else {
- in_derivative_section = false;
- }
- for (int j = 0; j < parameter_block_size; ++j, parameter_cursor++) {
- input_jets[parameter_cursor].a = parameters[i][j];
- }
- }
- if (num_active_parameters == 0) {
- return (*functor_)(parameters, residuals);
- }
- // When `num_active_parameters % Stride != 0` then it can be the case
- // that `active_parameter_count < Stride` while parameter_cursor is less
- // than the total number of parameters and with no remaining non-constant
- // parameter blocks. Pushing parameter_cursor (the total number of
- // parameters) as a final entry to start_derivative_section is required
- // because if a constant parameter block is encountered after the
- // last non-constant block then current_derivative_section is incremented
- // and would otherwise index an invalid position in
- // start_derivative_section. Setting the final element to the total number
- // of parameters means that this can only happen at most once in the loop
- // below.
- start_derivative_section.push_back(parameter_cursor);
- // Evaluate all of the strides. Each stride is a chunk of the derivative to
- // evaluate, typically some size proportional to the size of the SIMD
- // registers of the CPU.
- int num_strides = static_cast<int>(
- ceil(num_active_parameters / static_cast<float>(Stride)));
- int current_derivative_section = 0;
- int current_derivative_section_cursor = 0;
- for (int pass = 0; pass < num_strides; ++pass) {
- // Set most of the jet components to zero, except for
- // non-constant #Stride parameters.
- const int initial_derivative_section = current_derivative_section;
- const int initial_derivative_section_cursor =
- current_derivative_section_cursor;
- int active_parameter_count = 0;
- parameter_cursor = 0;
- for (int i = 0; i < num_parameter_blocks; ++i) {
- for (int j = 0; j < parameter_block_sizes()[i];
- ++j, parameter_cursor++) {
- input_jets[parameter_cursor].v.setZero();
- if (active_parameter_count < Stride &&
- parameter_cursor >=
- (start_derivative_section[current_derivative_section] +
- current_derivative_section_cursor)) {
- if (jacobians[i] != nullptr) {
- input_jets[parameter_cursor].v[active_parameter_count] = 1.0;
- ++active_parameter_count;
- ++current_derivative_section_cursor;
- } else {
- ++current_derivative_section;
- current_derivative_section_cursor = 0;
- }
- }
- }
- }
- if (!(*functor_)(&jet_parameters[0], &output_jets[0])) {
- return false;
- }
- // Copy the pieces of the jacobians into their final place.
- active_parameter_count = 0;
- current_derivative_section = initial_derivative_section;
- current_derivative_section_cursor = initial_derivative_section_cursor;
- for (int i = 0, parameter_cursor = 0; i < num_parameter_blocks; ++i) {
- for (int j = 0; j < parameter_block_sizes()[i];
- ++j, parameter_cursor++) {
- if (active_parameter_count < Stride &&
- parameter_cursor >=
- (start_derivative_section[current_derivative_section] +
- current_derivative_section_cursor)) {
- if (jacobians[i] != nullptr) {
- for (int k = 0; k < num_residuals(); ++k) {
- jacobians[i][k * parameter_block_sizes()[i] + j] =
- output_jets[k].v[active_parameter_count];
- }
- ++active_parameter_count;
- ++current_derivative_section_cursor;
- } else {
- ++current_derivative_section;
- current_derivative_section_cursor = 0;
- }
- }
- }
- }
- // Only copy the residuals over once (even though we compute them on
- // every loop).
- if (pass == num_strides - 1) {
- for (int k = 0; k < num_residuals(); ++k) {
- residuals[k] = output_jets[k].a;
- }
- }
- }
- return true;
- }
- private:
- std::unique_ptr<CostFunctor> functor_;
- Ownership ownership_;
- };
- // Deduction guide that allows the user to avoid explicitly specifying the
- // template parameter of DynamicAutoDiffCostFunction. The class can instead be
- // instantiated as follows:
- //
- // new DynamicAutoDiffCostFunction{new MyCostFunctor{}};
- //
- template <typename CostFunctor>
- DynamicAutoDiffCostFunction(CostFunctor* functor, Ownership ownership)
- -> DynamicAutoDiffCostFunction<CostFunctor>;
- } // namespace ceres
- #endif // CERES_PUBLIC_DYNAMIC_AUTODIFF_COST_FUNCTION_H_
|