MGH10.dat 2.4 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576
  1. NIST/ITL StRD
  2. Dataset Name: MGH10 (MGH10.dat)
  3. File Format: ASCII
  4. Starting Values (lines 41 to 43)
  5. Certified Values (lines 41 to 48)
  6. Data (lines 61 to 76)
  7. Procedure: Nonlinear Least Squares Regression
  8. Description: This problem was found to be difficult for some very
  9. good algorithms.
  10. See More, J. J., Garbow, B. S., and Hillstrom, K. E.
  11. (1981). Testing unconstrained optimization software.
  12. ACM Transactions on Mathematical Software. 7(1):
  13. pp. 17-41.
  14. Reference: Meyer, R. R. (1970).
  15. Theoretical and computational aspects of nonlinear
  16. regression. In Nonlinear Programming, Rosen,
  17. Mangasarian and Ritter (Eds).
  18. New York, NY: Academic Press, pp. 465-486.
  19. Data: 1 Response (y)
  20. 1 Predictor (x)
  21. 16 Observations
  22. Higher Level of Difficulty
  23. Generated Data
  24. Model: Exponential Class
  25. 3 Parameters (b1 to b3)
  26. y = b1 * exp[b2/(x+b3)] + e
  27. Starting values Certified Values
  28. Start 1 Start 2 Parameter Standard Deviation
  29. b1 = 2 0.02 5.6096364710E-03 1.5687892471E-04
  30. b2 = 400000 4000 6.1813463463E+03 2.3309021107E+01
  31. b3 = 25000 250 3.4522363462E+02 7.8486103508E-01
  32. Residual Sum of Squares: 8.7945855171E+01
  33. Residual Standard Deviation: 2.6009740065E+00
  34. Degrees of Freedom: 13
  35. Number of Observations: 16
  36. Data: y x
  37. 3.478000E+04 5.000000E+01
  38. 2.861000E+04 5.500000E+01
  39. 2.365000E+04 6.000000E+01
  40. 1.963000E+04 6.500000E+01
  41. 1.637000E+04 7.000000E+01
  42. 1.372000E+04 7.500000E+01
  43. 1.154000E+04 8.000000E+01
  44. 9.744000E+03 8.500000E+01
  45. 8.261000E+03 9.000000E+01
  46. 7.030000E+03 9.500000E+01
  47. 6.005000E+03 1.000000E+02
  48. 5.147000E+03 1.050000E+02
  49. 4.427000E+03 1.100000E+02
  50. 3.820000E+03 1.150000E+02
  51. 3.307000E+03 1.200000E+02
  52. 2.872000E+03 1.250000E+02