/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file testExpressionFactor.cpp * @date September 18, 2014 * @author Frank Dellaert * @author Paul Furgale * @brief unit tests for Block Automatic Differentiation */ #include #include #include #include #include #include #include #include #include #include using boost::assign::list_of; using namespace std::placeholders; using namespace std; using namespace gtsam; Point2 measured(-17, 30); SharedNoiseModel model = noiseModel::Unit::Create(2); // This deals with the overload problem and makes the expressions factor // understand that we work on Point3 Point2 (*Project)(const Point3&, OptionalJacobian<2, 3>) = &PinholeBase::Project; namespace leaf { // Create some values struct MyValues: public Values { MyValues() { insert(2, Point2(3, 5)); } } values; // Create leaf Point2_ p(2); } /* ************************************************************************* */ // Leaf TEST(ExpressionFactor, Leaf) { using namespace leaf; // Create old-style factor to create expected value and derivatives. PriorFactor old(2, Point2(0, 0), model); // Create the equivalent factor with expression. ExpressionFactor f(model, Point2(0, 0), p); // Check values and derivatives. EXPECT_DOUBLES_EQUAL(old.error(values), f.error(values), 1e-9); EXPECT_LONGS_EQUAL(2, f.dim()); boost::shared_ptr gf2 = f.linearize(values); EXPECT(assert_equal(*old.linearize(values), *gf2, 1e-9)); } /* ************************************************************************* */ // Test leaf expression with noise model of different variance. TEST(ExpressionFactor, Model) { using namespace leaf; SharedNoiseModel model = noiseModel::Diagonal::Sigmas(Vector2(0.1, 0.01)); // Create old-style factor to create expected value and derivatives. PriorFactor old(2, Point2(0, 0), model); // Create the equivalent factor with expression. ExpressionFactor f(model, Point2(0, 0), p); // Check values and derivatives. EXPECT_DOUBLES_EQUAL(old.error(values), f.error(values), 1e-9); EXPECT_LONGS_EQUAL(2, f.dim()); boost::shared_ptr gf2 = f.linearize(values); EXPECT(assert_equal(*old.linearize(values), *gf2, 1e-9)); EXPECT_CORRECT_FACTOR_JACOBIANS(f, values, 1e-5, 1e-5); // another way } /* ************************************************************************* */ // Test leaf expression with constrained noise model. TEST(ExpressionFactor, Constrained) { using namespace leaf; SharedDiagonal model = noiseModel::Constrained::MixedSigmas(Vector2(0.2, 0)); // Create old-style factor to create expected value and derivatives PriorFactor old(2, Point2(0, 0), model); // Concise version ExpressionFactor f(model, Point2(0, 0), p); EXPECT_DOUBLES_EQUAL(old.error(values), f.error(values), 1e-9); EXPECT_LONGS_EQUAL(2, f.dim()); boost::shared_ptr gf2 = f.linearize(values); EXPECT(assert_equal(*old.linearize(values), *gf2, 1e-9)); } /* ************************************************************************* */ // Unary(Leaf)) TEST(ExpressionFactor, Unary) { // Create some values Values values; values.insert(2, Point3(0, 0, 1)); JacobianFactor expected( // 2, (Matrix(2, 3) << 1, 0, 0, 0, 1, 0).finished(), // Vector2(-17, 30)); // Create leaves Point3_ p(2); // Concise version ExpressionFactor f(model, measured, project(p)); EXPECT_LONGS_EQUAL(2, f.dim()); boost::shared_ptr gf = f.linearize(values); boost::shared_ptr jf = // boost::dynamic_pointer_cast(gf); EXPECT(assert_equal(expected, *jf, 1e-9)); } /* ************************************************************************* */ // Unary(Leaf)) and Unary(Unary(Leaf))) // wide version (not handled in fixed-size pipeline) typedef Eigen::Matrix Matrix93; Vector9 wide(const Point3& p, OptionalJacobian<9,3> H) { Vector9 v; v << p, p, p; if (H) *H << I_3x3, I_3x3, I_3x3; return v; } typedef Eigen::Matrix Matrix9; Vector9 id9(const Vector9& v, OptionalJacobian<9,9> H) { if (H) *H = Matrix9::Identity(); return v; } TEST(ExpressionFactor, Wide) { // Create some values Values values; values.insert(2, Point3(0, 0, 1)); Point3_ point(2); Vector9 measured; measured.setZero(); Expression expression(wide,point); SharedNoiseModel model = noiseModel::Unit::Create(9); ExpressionFactor f1(model, measured, expression); EXPECT_CORRECT_FACTOR_JACOBIANS(f1, values, 1e-5, 1e-9); Expression expression2(id9,expression); ExpressionFactor f2(model, measured, expression2); EXPECT_CORRECT_FACTOR_JACOBIANS(f2, values, 1e-5, 1e-9); } /* ************************************************************************* */ static Point2 myUncal(const Cal3_S2& K, const Point2& p, OptionalJacobian<2,5> Dcal, OptionalJacobian<2,2> Dp) { return K.uncalibrate(p, Dcal, Dp); } // Binary(Leaf,Leaf) TEST(ExpressionFactor, Binary) { typedef internal::BinaryExpression Binary; Cal3_S2_ K_(1); Point2_ p_(2); Binary binary(myUncal, K_, p_); // Create some values Values values; values.insert(1, Cal3_S2()); values.insert(2, Point2(0, 0)); // Check size size_t size = binary.traceSize(); // Use Variable Length Array, allocated on stack by gcc // Note unclear for Clang: http://clang.llvm.org/compatibility.html#vla internal::ExecutionTraceStorage traceStorage[size]; internal::ExecutionTrace trace; Point2 value = binary.traceExecution(values, trace, traceStorage); EXPECT(assert_equal(Point2(0,0),value, 1e-9)); // trace.print(); // Expected Jacobians Matrix25 expected25; expected25 << 0, 0, 0, 1, 0, 0, 0, 0, 0, 1; Matrix2 expected22; expected22 << 1, 0, 0, 1; // Check matrices boost::optional r = trace.record(); CHECK(r); EXPECT(assert_equal(expected25, (Matrix ) (*r)->dTdA1, 1e-9)); EXPECT(assert_equal(expected22, (Matrix ) (*r)->dTdA2, 1e-9)); } /* ************************************************************************* */ // Unary(Binary(Leaf,Leaf)) TEST(ExpressionFactor, Shallow) { // Create some values Values values; values.insert(1, Pose3()); values.insert(2, Point3(0, 0, 1)); // Create old-style factor to create expected value and derivatives GenericProjectionFactor old(measured, model, 1, 2, boost::make_shared()); double expected_error = old.error(values); GaussianFactor::shared_ptr expected = old.linearize(values); // Create leaves Pose3_ x_(1); Point3_ p_(2); // Construct expression, concise evrsion Point2_ expression = project(transformTo(x_, p_)); // Get and check keys and dims KeyVector keys; FastVector dims; boost::tie(keys, dims) = expression.keysAndDims(); LONGS_EQUAL(2,keys.size()); LONGS_EQUAL(2,dims.size()); LONGS_EQUAL(1,keys[0]); LONGS_EQUAL(2,keys[1]); LONGS_EQUAL(6,dims[0]); LONGS_EQUAL(3,dims[1]); // traceExecution of shallow tree typedef internal::UnaryExpression Unary; size_t size = expression.traceSize(); internal::ExecutionTraceStorage traceStorage[size]; internal::ExecutionTrace trace; Point2 value = expression.traceExecution(values, trace, traceStorage); EXPECT(assert_equal(Point2(0,0),value, 1e-9)); // trace.print(); // Expected Jacobians Matrix23 expected23; expected23 << 1, 0, 0, 0, 1, 0; // Check matrices boost::optional r = trace.record(); CHECK(r); EXPECT(assert_equal(expected23, (Matrix)(*r)->dTdA1, 1e-9)); // Linearization ExpressionFactor f2(model, measured, expression); EXPECT_DOUBLES_EQUAL(expected_error, f2.error(values), 1e-9); EXPECT_LONGS_EQUAL(2, f2.dim()); boost::shared_ptr gf2 = f2.linearize(values); EXPECT(assert_equal(*expected, *gf2, 1e-9)); } /* ************************************************************************* */ // Binary(Leaf,Unary(Binary(Leaf,Leaf))) TEST(ExpressionFactor, tree) { // Create some values Values values; values.insert(1, Pose3()); values.insert(2, Point3(0, 0, 1)); values.insert(3, Cal3_S2()); // Create old-style factor to create expected value and derivatives GeneralSFMFactor2 old(measured, model, 1, 2, 3); double expected_error = old.error(values); GaussianFactor::shared_ptr expected = old.linearize(values); // Create leaves Pose3_ x(1); Point3_ p(2); Cal3_S2_ K(3); // Create expression tree Point3_ p_cam(x, &Pose3::transformTo, p); Point2_ xy_hat(Project, p_cam); Point2_ uv_hat(K, &Cal3_S2::uncalibrate, xy_hat); // Create factor and check value, dimension, linearization ExpressionFactor f(model, measured, uv_hat); EXPECT_DOUBLES_EQUAL(expected_error, f.error(values), 1e-9); EXPECT_LONGS_EQUAL(2, f.dim()); boost::shared_ptr gf = f.linearize(values); EXPECT(assert_equal(*expected, *gf, 1e-9)); // Concise version ExpressionFactor f2(model, measured, uncalibrate(K, project(transformTo(x, p)))); EXPECT_DOUBLES_EQUAL(expected_error, f2.error(values), 1e-9); EXPECT_LONGS_EQUAL(2, f2.dim()); boost::shared_ptr gf2 = f2.linearize(values); EXPECT(assert_equal(*expected, *gf2, 1e-9)); // Try ternary version ExpressionFactor f3(model, measured, project3(x, p, K)); EXPECT_DOUBLES_EQUAL(expected_error, f3.error(values), 1e-9); EXPECT_LONGS_EQUAL(2, f3.dim()); boost::shared_ptr gf3 = f3.linearize(values); EXPECT(assert_equal(*expected, *gf3, 1e-9)); } /* ************************************************************************* */ TEST(ExpressionFactor, Compose1) { // Create expression Rot3_ R1(1), R2(2); Rot3_ R3 = R1 * R2; // Create factor ExpressionFactor f(noiseModel::Unit::Create(3), Rot3(), R3); // Create some values Values values; values.insert(1, Rot3()); values.insert(2, Rot3()); // Check unwhitenedError std::vector H(2); Vector actual = f.unwhitenedError(values, H); EXPECT(assert_equal(I_3x3, H[0],1e-9)); EXPECT(assert_equal(I_3x3, H[1],1e-9)); // Check linearization JacobianFactor expected(1, I_3x3, 2, I_3x3, Z_3x1); boost::shared_ptr gf = f.linearize(values); boost::shared_ptr jf = // boost::dynamic_pointer_cast(gf); EXPECT(assert_equal(expected, *jf,1e-9)); } /* ************************************************************************* */ // Test compose with arguments referring to the same rotation TEST(ExpressionFactor, compose2) { // Create expression Rot3_ R1(1), R2(1); Rot3_ R3 = R1 * R2; // Create factor ExpressionFactor f(noiseModel::Unit::Create(3), Rot3(), R3); // Create some values Values values; values.insert(1, Rot3()); // Check unwhitenedError std::vector H(1); Vector actual = f.unwhitenedError(values, H); EXPECT_LONGS_EQUAL(1, H.size()); EXPECT(assert_equal(2*I_3x3, H[0],1e-9)); // Check linearization JacobianFactor expected(1, 2 * I_3x3, Z_3x1); boost::shared_ptr gf = f.linearize(values); boost::shared_ptr jf = // boost::dynamic_pointer_cast(gf); EXPECT(assert_equal(expected, *jf,1e-9)); } /* ************************************************************************* */ // Test compose with one arguments referring to a constant same rotation TEST(ExpressionFactor, compose3) { // Create expression Rot3_ R1(Rot3::identity()), R2(3); Rot3_ R3 = R1 * R2; // Create factor ExpressionFactor f(noiseModel::Unit::Create(3), Rot3(), R3); // Create some values Values values; values.insert(3, Rot3()); // Check unwhitenedError std::vector H(1); Vector actual = f.unwhitenedError(values, H); EXPECT_LONGS_EQUAL(1, H.size()); EXPECT(assert_equal(I_3x3, H[0],1e-9)); // Check linearization JacobianFactor expected(3, I_3x3, Z_3x1); boost::shared_ptr gf = f.linearize(values); boost::shared_ptr jf = // boost::dynamic_pointer_cast(gf); EXPECT(assert_equal(expected, *jf,1e-9)); } /* ************************************************************************* */ // Test compose with three arguments Rot3 composeThree(const Rot3& R1, const Rot3& R2, const Rot3& R3, OptionalJacobian<3, 3> H1, OptionalJacobian<3, 3> H2, OptionalJacobian<3, 3> H3) { // return dummy derivatives (not correct, but that's ok for testing here) if (H1) *H1 = I_3x3; if (H2) *H2 = I_3x3; if (H3) *H3 = I_3x3; return R1 * (R2 * R3); } TEST(ExpressionFactor, composeTernary) { // Create expression Rot3_ A(1), B(2), C(3); Rot3_ ABC(composeThree, A, B, C); // Create factor ExpressionFactor f(noiseModel::Unit::Create(3), Rot3(), ABC); // Create some values Values values; values.insert(1, Rot3()); values.insert(2, Rot3()); values.insert(3, Rot3()); // Check unwhitenedError std::vector H(3); Vector actual = f.unwhitenedError(values, H); EXPECT_LONGS_EQUAL(3, H.size()); EXPECT(assert_equal(I_3x3, H[0],1e-9)); EXPECT(assert_equal(I_3x3, H[1],1e-9)); EXPECT(assert_equal(I_3x3, H[2],1e-9)); // Check linearization JacobianFactor expected(1, I_3x3, 2, I_3x3, 3, I_3x3, Z_3x1); boost::shared_ptr gf = f.linearize(values); boost::shared_ptr jf = // boost::dynamic_pointer_cast(gf); EXPECT(assert_equal(expected, *jf,1e-9)); } TEST(ExpressionFactor, tree_finite_differences) { // Create some values Values values; values.insert(1, Pose3()); values.insert(2, Point3(0, 0, 1)); values.insert(3, Cal3_S2()); // Create leaves Pose3_ x(1); Point3_ p(2); Cal3_S2_ K(3); // Create expression tree Point3_ p_cam(x, &Pose3::transformTo, p); Point2_ xy_hat(Project, p_cam); Point2_ uv_hat(K, &Cal3_S2::uncalibrate, xy_hat); const double fd_step = 1e-5; const double tolerance = 1e-5; EXPECT_CORRECT_EXPRESSION_JACOBIANS(uv_hat, values, fd_step, tolerance); } TEST(ExpressionFactor, push_back) { NonlinearFactorGraph graph; graph.addExpressionFactor(model, Point2(0, 0), leaf::p); } /* ************************************************************************* */ // Test with multiple compositions on duplicate keys struct Combine { double a, b; Combine(double a, double b) : a(a), b(b) {} double operator()(const double& x, const double& y, OptionalJacobian<1, 1> H1, OptionalJacobian<1, 1> H2) { if (H1) (*H1) << a; if (H2) (*H2) << b; return a * x + b * y; } }; TEST(Expression, testMultipleCompositions) { const double tolerance = 1e-5; const double fd_step = 1e-5; Values values; values.insert(1, 10.0); values.insert(2, 20.0); Expression v1_(Key(1)); Expression v2_(Key(2)); // BinaryExpression(1,2) // Leaf, key = 1 // Leaf, key = 2 Expression sum1_(Combine(1, 2), v1_, v2_); EXPECT(sum1_.keys() == list_of(1)(2)); EXPECT_CORRECT_EXPRESSION_JACOBIANS(sum1_, values, fd_step, tolerance); // BinaryExpression(3,4) // BinaryExpression(1,2) // Leaf, key = 1 // Leaf, key = 2 // Leaf, key = 1 Expression sum2_(Combine(3, 4), sum1_, v1_); EXPECT(sum2_.keys() == list_of(1)(2)); EXPECT_CORRECT_EXPRESSION_JACOBIANS(sum2_, values, fd_step, tolerance); // BinaryExpression(5,6) // BinaryExpression(3,4) // BinaryExpression(1,2) // Leaf, key = 1 // Leaf, key = 2 // Leaf, key = 1 // BinaryExpression(1,2) // Leaf, key = 1 // Leaf, key = 2 Expression sum3_(Combine(5, 6), sum1_, sum2_); EXPECT(sum3_.keys() == list_of(1)(2)); EXPECT_CORRECT_EXPRESSION_JACOBIANS(sum3_, values, fd_step, tolerance); } /* ************************************************************************* */ // Another test, with Ternary Expressions static double combine3(const double& x, const double& y, const double& z, OptionalJacobian<1, 1> H1, OptionalJacobian<1, 1> H2, OptionalJacobian<1, 1> H3) { if (H1) (*H1) << 1.0; if (H2) (*H2) << 2.0; if (H3) (*H3) << 3.0; return x + 2.0 * y + 3.0 * z; } TEST(Expression, testMultipleCompositions2) { const double tolerance = 1e-5; const double fd_step = 1e-5; Values values; values.insert(1, 10.0); values.insert(2, 20.0); values.insert(3, 30.0); Expression v1_(Key(1)); Expression v2_(Key(2)); Expression v3_(Key(3)); Expression sum1_(Combine(4,5), v1_, v2_); EXPECT(sum1_.keys() == list_of(1)(2)); EXPECT_CORRECT_EXPRESSION_JACOBIANS(sum1_, values, fd_step, tolerance); Expression sum2_(combine3, v1_, v2_, v3_); EXPECT(sum2_.keys() == list_of(1)(2)(3)); EXPECT_CORRECT_EXPRESSION_JACOBIANS(sum2_, values, fd_step, tolerance); Expression sum3_(combine3, v3_, v2_, v1_); EXPECT(sum3_.keys() == list_of(1)(2)(3)); EXPECT_CORRECT_EXPRESSION_JACOBIANS(sum3_, values, fd_step, tolerance); Expression sum4_(combine3, sum1_, sum2_, sum3_); EXPECT(sum4_.keys() == list_of(1)(2)(3)); EXPECT_CORRECT_EXPRESSION_JACOBIANS(sum4_, values, fd_step, tolerance); } /* ************************************************************************* */ // Test multiplication with the inverse of a matrix TEST(ExpressionFactor, MultiplyWithInverse) { auto model = noiseModel::Isotropic::Sigma(3, 1); // Create expression Vector3_ f_expr(MultiplyWithInverse<3>(), Expression(0), Vector3_(1)); // Check derivatives Values values; Matrix3 A = Vector3(1, 2, 3).asDiagonal(); A(0, 1) = 0.1; A(0, 2) = 0.1; const Vector3 b(0.1, 0.2, 0.3); values.insert(0, A); values.insert(1, b); ExpressionFactor factor(model, Vector3::Zero(), f_expr); EXPECT_CORRECT_FACTOR_JACOBIANS(factor, values, 1e-5, 1e-5); } /* ************************************************************************* */ // Test multiplication with the inverse of a matrix function namespace test_operator { Vector3 f(const Point2& a, const Vector3& b, OptionalJacobian<3, 2> H1, OptionalJacobian<3, 3> H2) { Matrix3 A = Vector3(1, 2, 3).asDiagonal(); A(0, 1) = a.x(); A(0, 2) = a.y(); A(1, 0) = a.x(); if (H1) *H1 << b.y(), b.z(), b.x(), 0, 0, 0; if (H2) *H2 = A; return A * b; } } TEST(ExpressionFactor, MultiplyWithInverseFunction) { auto model = noiseModel::Isotropic::Sigma(3, 1); using test_operator::f; Vector3_ f_expr(MultiplyWithInverseFunction(f), Expression(0), Vector3_(1)); // Check derivatives Point2 a(1, 2); const Vector3 b(0.1, 0.2, 0.3); Matrix32 H1; Matrix3 A; const Vector Ab = f(a, b, H1, A); CHECK(assert_equal(A * b, Ab)); CHECK(assert_equal( numericalDerivative11( std::bind(f, std::placeholders::_1, b, boost::none, boost::none), a), H1)); Values values; values.insert(0, a); values.insert(1, b); ExpressionFactor factor(model, Vector3::Zero(), f_expr); EXPECT_CORRECT_FACTOR_JACOBIANS(factor, values, 1e-5, 1e-5); } /* ************************************************************************* */ // Test N-ary variadic template class TestNaryFactor : public gtsam::ExpressionFactorN { private: using This = TestNaryFactor; using Base = gtsam::ExpressionFactorN; public: /// default constructor TestNaryFactor() = default; ~TestNaryFactor() override = default; TestNaryFactor(gtsam::Key kR1, gtsam::Key kV1, gtsam::Key kR2, gtsam::Key kV2, const gtsam::SharedNoiseModel &model, const gtsam::Point3& measured) : Base({kR1, kV1, kR2, kV2}, model, measured) { this->initialize(expression({kR1, kV1, kR2, kV2})); } /// @return a deep copy of this factor gtsam::NonlinearFactor::shared_ptr clone() const override { return boost::static_pointer_cast( gtsam::NonlinearFactor::shared_ptr(new This(*this))); } // Return measurement expression gtsam::Expression expression( const std::array &keys) const override { gtsam::Expression R1_(keys[0]); gtsam::Expression V1_(keys[1]); gtsam::Expression R2_(keys[2]); gtsam::Expression V2_(keys[3]); return {gtsam::rotate(R1_, V1_) - gtsam::rotate(R2_, V2_)}; } /** print */ void print(const std::string &s, const gtsam::KeyFormatter &keyFormatter = gtsam::DefaultKeyFormatter) const override { std::cout << s << "TestNaryFactor(" << keyFormatter(Factor::keys_[0]) << "," << keyFormatter(Factor::keys_[1]) << "," << keyFormatter(Factor::keys_[2]) << "," << keyFormatter(Factor::keys_[3]) << ")\n"; gtsam::traits::Print(measured_, " measured: "); this->noiseModel_->print(" noise model: "); } /** equals */ bool equals(const gtsam::NonlinearFactor &expected, double tol = 1e-9) const override { const This *e = dynamic_cast(&expected); return e != nullptr && Base::equals(*e, tol) && gtsam::traits::Equals(measured_,e->measured_, tol); } private: /** Serialization function */ friend class boost::serialization::access; template void serialize(ARCHIVE &ar, const unsigned int /*version*/) { ar &boost::serialization::make_nvp( "TestNaryFactor", boost::serialization::base_object(*this)); ar &BOOST_SERIALIZATION_NVP(measured_); } }; TEST(ExpressionFactor, variadicTemplate) { using gtsam::symbol_shorthand::R; using gtsam::symbol_shorthand::V; // Create factor TestNaryFactor f(R(0),V(0), R(1), V(1), noiseModel::Unit::Create(3), Point3(0,0,0)); // Create some values Values values; values.insert(R(0), Rot3::Ypr(0.1, 0.2, 0.3)); values.insert(V(0), Point3(1, 2, 3)); values.insert(R(1), Rot3::Ypr(0.2, 0.5, 0.2)); values.insert(V(1), Point3(5, 6, 7)); // Check unwhitenedError std::vector H(4); Vector actual = f.unwhitenedError(values, H); EXPECT_LONGS_EQUAL(4, H.size()); EXPECT(assert_equal(Eigen::Vector3d(-5.63578115, -4.85353243, -1.4801204), actual, 1e-5)); EXPECT_CORRECT_FACTOR_JACOBIANS(f, values, 1e-8, 1e-5); } TEST(ExpressionFactor, crossProduct) { auto model = noiseModel::Isotropic::Sigma(3, 1); // Create expression const auto a = Vector3_(1); const auto b = Vector3_(2); Vector3_ f_expr = cross(a, b); // Check derivatives Values values; values.insert(1, Vector3(0.1, 0.2, 0.3)); values.insert(2, Vector3(0.4, 0.5, 0.6)); ExpressionFactor factor(model, Vector3::Zero(), f_expr); EXPECT_CORRECT_FACTOR_JACOBIANS(factor, values, 1e-5, 1e-5); } TEST(ExpressionFactor, dotProduct) { auto model = noiseModel::Isotropic::Sigma(1, 1); // Create expression const auto a = Vector3_(1); const auto b = Vector3_(2); Double_ f_expr = dot(a, b); // Check derivatives Values values; values.insert(1, Vector3(0.1, 0.2, 0.3)); values.insert(2, Vector3(0.4, 0.5, 0.6)); ExpressionFactor factor(model, .0, f_expr); EXPECT_CORRECT_FACTOR_JACOBIANS(factor, values, 1e-5, 1e-5); } /* ************************************************************************* */ int main() { TestResult tr; return TestRegistry::runAllTests(tr); } /* ************************************************************************* */