/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file SFMExampleExpressions.cpp * @brief A structure-from-motion example done with Expressions * @author Frank Dellaert * @author Duy-Nguyen Ta * @date October 1, 2014 */ /** * This is the Expression version of SFMExample * See detailed description of headers there, this focuses on explaining the AD part */ // The two new headers that allow using our Automatic Differentiation Expression framework #include #include // Header order is close to far #include "SFMdata.h" #include #include #include #include #include using namespace std; using namespace gtsam; using namespace noiseModel; /* ************************************************************************* */ int main(int argc, char* argv[]) { Cal3_S2 K(50.0, 50.0, 0.0, 50.0, 50.0); Isotropic::shared_ptr measurementNoise = Isotropic::Sigma(2, 1.0); // one pixel in u and v // Create the set of ground-truth landmarks and poses vector points = createPoints(); vector poses = createPoses(); // Create a factor graph ExpressionFactorGraph graph; // Specify uncertainty on first pose prior Vector6 sigmas; sigmas << Vector3(0.3,0.3,0.3), Vector3(0.1,0.1,0.1); Diagonal::shared_ptr poseNoise = Diagonal::Sigmas(sigmas); // Here we don't use a PriorFactor but directly the ExpressionFactor class // x0 is an Expression, and we create a factor wanting it to be equal to poses[0] Pose3_ x0('x',0); graph.addExpressionFactor(x0, poses[0], poseNoise); // We create a constant Expression for the calibration here Cal3_S2_ cK(K); // Simulated measurements from each camera pose, adding them to the factor graph for (size_t i = 0; i < poses.size(); ++i) { Pose3_ x('x', i); PinholeCamera camera(poses[i], K); for (size_t j = 0; j < points.size(); ++j) { Point2 measurement = camera.project(points[j]); // Below an expression for the prediction of the measurement: Point3_ p('l', j); Point2_ prediction = uncalibrate(cK, project(transformTo(x, p))); // Again, here we use an ExpressionFactor graph.addExpressionFactor(prediction, measurement, measurementNoise); } } // Add prior on first point to constrain scale, again with ExpressionFactor Isotropic::shared_ptr pointNoise = Isotropic::Sigma(3, 0.1); graph.addExpressionFactor(Point3_('l', 0), points[0], pointNoise); // Create perturbed initial Values initial; Pose3 delta(Rot3::Rodrigues(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20)); for (size_t i = 0; i < poses.size(); ++i) initial.insert(Symbol('x', i), poses[i].compose(delta)); for (size_t j = 0; j < points.size(); ++j) initial.insert(Symbol('l', j), points[j] + Point3(-0.25, 0.20, 0.15)); cout << "initial error = " << graph.error(initial) << endl; /* Optimize the graph and print results */ Values result = DoglegOptimizer(graph, initial).optimize(); cout << "final error = " << graph.error(result) << endl; return 0; } /* ************************************************************************* */