// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2023 Google Inc. All rights reserved. // http://ceres-solver.org/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Authors: vitus@google.com (Michael Vitus), // dmitriy.korchemkin@gmail.com (Dmitriy Korchemkin) #ifndef CERES_INTERNAL_PARTITION_RANGE_FOR_PARALLEL_FOR_H_ #define CERES_INTERNAL_PARTITION_RANGE_FOR_PARALLEL_FOR_H_ #include #include namespace ceres::internal { // Check if it is possible to split range [start; end) into at most // max_num_partitions contiguous partitions of cost not greater than // max_partition_cost. Inclusive integer cumulative costs are provided by // cumulative_cost_data objects, with cumulative_cost_offset being a total cost // of all indices (starting from zero) preceding start element. Cumulative costs // are returned by cumulative_cost_fun called with a reference to // cumulative_cost_data element with index from range[start; end), and should be // non-decreasing. Partition of the range is returned via partition argument template bool MaxPartitionCostIsFeasible(int start, int end, int max_num_partitions, int max_partition_cost, int cumulative_cost_offset, const CumulativeCostData* cumulative_cost_data, CumulativeCostFun&& cumulative_cost_fun, std::vector* partition) { partition->clear(); partition->push_back(start); int partition_start = start; int cost_offset = cumulative_cost_offset; while (partition_start < end) { // Already have max_num_partitions if (partition->size() > max_num_partitions) { return false; } const int target = max_partition_cost + cost_offset; const int partition_end = std::partition_point( cumulative_cost_data + partition_start, cumulative_cost_data + end, [&cumulative_cost_fun, target](const CumulativeCostData& item) { return cumulative_cost_fun(item) <= target; }) - cumulative_cost_data; // Unable to make a partition from a single element if (partition_end == partition_start) { return false; } const int cost_last = cumulative_cost_fun(cumulative_cost_data[partition_end - 1]); partition->push_back(partition_end); partition_start = partition_end; cost_offset = cost_last; } return true; } // Split integer interval [start, end) into at most max_num_partitions // contiguous intervals, minimizing maximal total cost of a single interval. // Inclusive integer cumulative costs for each (zero-based) index are provided // by cumulative_cost_data objects, and are returned by cumulative_cost_fun call // with a reference to one of the objects from range [start, end) template std::vector PartitionRangeForParallelFor( int start, int end, int max_num_partitions, const CumulativeCostData* cumulative_cost_data, CumulativeCostFun&& cumulative_cost_fun) { // Given maximal partition cost, it is possible to verify if it is admissible // and obtain corresponding partition using MaxPartitionCostIsFeasible // function. In order to find the lowest admissible value, a binary search // over all potentially optimal cost values is being performed const int cumulative_cost_last = cumulative_cost_fun(cumulative_cost_data[end - 1]); const int cumulative_cost_offset = start ? cumulative_cost_fun(cumulative_cost_data[start - 1]) : 0; const int total_cost = cumulative_cost_last - cumulative_cost_offset; // Minimal maximal partition cost is not smaller than the average // We will use non-inclusive lower bound int partition_cost_lower_bound = total_cost / max_num_partitions - 1; // Minimal maximal partition cost is not larger than the total cost // Upper bound is inclusive int partition_cost_upper_bound = total_cost; std::vector partition; // Range partition corresponding to the latest evaluated upper bound. // A single segment covering the whole input interval [start, end) corresponds // to minimal maximal partition cost of total_cost. std::vector partition_upper_bound = {start, end}; // Binary search over partition cost, returning the lowest admissible cost while (partition_cost_upper_bound - partition_cost_lower_bound > 1) { partition.reserve(max_num_partitions + 1); const int partition_cost = partition_cost_lower_bound + (partition_cost_upper_bound - partition_cost_lower_bound) / 2; bool admissible = MaxPartitionCostIsFeasible( start, end, max_num_partitions, partition_cost, cumulative_cost_offset, cumulative_cost_data, std::forward(cumulative_cost_fun), &partition); if (admissible) { partition_cost_upper_bound = partition_cost; std::swap(partition, partition_upper_bound); } else { partition_cost_lower_bound = partition_cost; } } return partition_upper_bound; } } // namespace ceres::internal #endif