.. _sec-bibliography: ============ Bibliography ============ Background Reading ================== For a short but informative introduction to the subject we recommend the booklet by [Madsen]_ . For a general introduction to non-linear optimization we recommend [NocedalWright]_. [Bjorck]_ remains the seminal reference on least squares problems. [TrefethenBau]_ is our favorite text on introductory numerical linear algebra. [Triggs]_ provides a thorough coverage of the bundle adjustment problem. References ========== .. [Agarwal] S. Agarwal, N. Snavely, S. M. Seitz and R. Szeliski, **Bundle Adjustment in the Large**, *Proceedings of the European Conference on Computer Vision*, pp. 29--42, 2010. .. [Bjorck] A. Bjorck, **Numerical Methods for Least Squares Problems**, SIAM, 1996 .. [Brown] D. C. Brown, **A solution to the general problem of multiple station analytical stereo triangulation**, Technical Report 43, Patrick Airforce Base, Florida, 1958. .. [ByrdNocedal] R. H. Byrd, J. Nocedal, R. B. Schanbel, **Representations of Quasi-Newton Matrices and their use in Limited Memory Methods**, *Mathematical Programming* 63(4):129-156, 1994. .. [ByrdSchnabel] R.H. Byrd, R.B. Schnabel, and G.A. Shultz, **Approximate solution of the trust region problem by minimization over two dimensional subspaces**, *Mathematical programming*, 40(1):247-263, 1988. .. [Chen] Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam, **Algorithm 887: CHOLMOD, Supernodal Sparse Cholesky Factorization and Update/Downdate**, *TOMS*, 35(3), 2008. .. [Conn] A.R. Conn, N.I.M. Gould, and P.L. Toint, **Trust region methods**, *Society for Industrial Mathematics*, 2000. .. [Dellaert] F. Dellaert, J. Carlson, V. Ila, K. Ni and C. E. Thorpe, **Subgraph-preconditioned conjugate gradients for large scale SLAM**, *International Conference on Intelligent Robots and Systems*, 2010. .. [GolubPereyra] G.H. Golub and V. Pereyra, **The differentiation of pseudo-inverses and nonlinear least squares problems whose variables separate**, *SIAM Journal on numerical analysis*, 10(2):413-432, 1973. .. [GouldScott] N. Gould and J. Scott, **The State-of-the-Art of Preconditioners for Sparse Linear Least-Squares Problems**, *ACM Trans. Math. Softw.*, 43(4), 2017. .. [HartleyZisserman] R.I. Hartley & A. Zisserman, **Multiview Geometry in Computer Vision**, Cambridge University Press, 2004. .. [Hertzberg] C. Hertzberg, R. Wagner, U. Frese and L. Schroder, **Integrating Generic Sensor Fusion Algorithms with Sound State Representations through Encapsulation of Manifolds**, *Information Fusion*, 14(1):57-77, 2013. .. [KanataniMorris] K. Kanatani and D. D. Morris, **Gauges and gauge transformations for uncertainty description of geometric structure with indeterminacy**, *IEEE Transactions on Information Theory* 47(5):2017-2028, 2001. .. [Keys] R. G. Keys, **Cubic convolution interpolation for digital image processing**, *IEEE Trans. on Acoustics, Speech, and Signal Processing*, 29(6), 1981. .. [KushalAgarwal] A. Kushal and S. Agarwal, **Visibility based preconditioning for bundle adjustment**, *In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, 2012. .. [Kanzow] C. Kanzow, N. Yamashita and M. Fukushima, **Levenberg-Marquardt methods with strong local convergence properties for solving nonlinear equations with convex constraints**, *Journal of Computational and Applied Mathematics*, 177(2):375-397, 2005. .. [Levenberg] K. Levenberg, **A method for the solution of certain nonlinear problems in least squares**, *Quart. Appl. Math*, 2(2):164-168, 1944. .. [LiSaad] Na Li and Y. Saad, **MIQR: A multilevel incomplete qr preconditioner for large sparse least squares problems**, *SIAM Journal on Matrix Analysis and Applications*, 28(2):524-550, 2007. .. [Madsen] K. Madsen, H.B. Nielsen, and O. Tingleff, **Methods for nonlinear least squares problems**, 2004. .. [Mandel] J. Mandel, **On block diagonal and Schur complement preconditioning**, *Numer. Math.*, 58(1):79-93, 1990. .. [Marquardt] D.W. Marquardt, **An algorithm for least squares estimation of nonlinear parameters**, *J. SIAM*, 11(2):431-441, 1963. .. [Mathew] T.P.A. Mathew, **Domain decomposition methods for the numerical solution of partial differential equations**, Springer Verlag, 2008. .. [NashSofer] S.G. Nash and A. Sofer, **Assessing a search direction within a truncated newton method**, *Operations Research Letters*, 9(4):219-221, 1990. .. [Nocedal] J. Nocedal, **Updating Quasi-Newton Matrices with Limited Storage**, *Mathematics of Computation*, 35(151): 773--782, 1980. .. [NocedalWright] J. Nocedal & S. Wright, **Numerical Optimization**, Springer, 2004. .. [Oren] S. S. Oren, **Self-scaling Variable Metric (SSVM) Algorithms Part II: Implementation and Experiments**, Management Science, 20(5), 863-874, 1974. .. [Press] W. H. Press, S. A. Teukolsky, W. T. Vetterling & B. P. Flannery, **Numerical Recipes**, Cambridge University Press, 2007. .. [Ridders] C. J. F. Ridders, **Accurate computation of F'(x) and F'(x) F"(x)**, Advances in Engineering Software 4(2), 75-76, 1978. .. [RuheWedin] A. Ruhe and P.Å. Wedin, **Algorithms for separable nonlinear least squares problems**, Siam Review, 22(3):318-337, 1980. .. [Saad] Y. Saad, **Iterative methods for sparse linear systems**, SIAM, 2003. .. [Simon] I. Simon, N. Snavely and S. M. Seitz, **Scene Summarization for Online Image Collections**, *International Conference on Computer Vision*, 2007. .. [Stigler] S. M. Stigler, **Gauss and the invention of least squares**, *The Annals of Statistics*, 9(3):465-474, 1981. .. [TenenbaumDirector] J. Tenenbaum & B. Director, **How Gauss Determined the Orbit of Ceres**. .. [TrefethenBau] L.N. Trefethen and D. Bau, **Numerical Linear Algebra**, SIAM, 1997. .. [Triggs] B. Triggs, P. F. Mclauchlan, R. I. Hartley & A. W. Fitzgibbon, **Bundle Adjustment: A Modern Synthesis**, Proceedings of the International Workshop on Vision Algorithms: Theory and Practice, pp. 298-372, 1999. .. [Wiberg] T. Wiberg, **Computation of principal components when data are missing**, In Proc. *Second Symp. Computational Statistics*, pages 229-236, 1976. .. [WrightHolt] S. J. Wright and J. N. Holt, **An Inexact Levenberg Marquardt Method for Large Sparse Nonlinear Least Squares**, *Journal of the Australian Mathematical Society Series B*, 26(4):387-403, 1985.